
Brock University
Faculty of Mathematics & Science
Department of Computer Science

COSC 4P78: Robotics

4P78 Project Documentation

Prepared By:

Parker TenBroeck 7376726
pt21zs@brocku.ca

Brett
brett@brocku.ca

Instructor:
Earl Foxwell

April 26, 2025

Bobot

Contents

1 Introduction 2

2 Instructions 2

3 Problem Set 2

3.1 Balancing . 2

3.2 Odometry . 2

3.3 Target Positions . 3

3.4 Communication . 3

4 Approaches 3

4.1 Balancing . 3

4.2 Odometry . 3

4.3 Target Positions . 3

4.4 Communication . 3

5 Challanages 3

5.1 Balancing . 3

5.2 Odometry . 4

5.3 Target Positions . 4

5.4 Communication . 4

6 Resources Used 4

1

Bobot

1 Introduction

What if you wanted to make a robot to map out a room but you only had two wheels and
two motors at your disposal? Well we have the perfect solution for you! Introducing the
Bobot, a two wheeled robot which is more of a circus act than useful.
With only two wheels its purely dynamically stable, will fall over due to its own stupidity
but its very cute while it does so! This little guy can wiz around at the speed of a snail your
house and (poorly) map out a room to your hearts desire

2 Instructions

• Hold robot in a vertical upright position clear of obsticals

• Place battery in top compartment

• Plug battery in and wait for robot to initialize

• Once robot has booted let go and step away

• Connect computer to network MEOW

• launch vidualization and control software

3 Problem Set

3.1 Balancing

We have a vertical two wheeled robot I hope its fairly obvious when I say that it is only
dynamically stable. This presents a challance because we need some system which keeps
the system upright in a variaty of situations and responds dynamically to changes it cannot
predict.

3.2 Odometry

Because we intend to map an area with the robot we need to know where we are. This issue
is made slightly more challanging due to the fact we are in nearly constant motion keeping
ourself upright.

2

Bobot

3.3 Target Positions

The problem of target positions like odometry is made more challenging due to the fact we
are almost constantly in motion. We simply cannot ”not move” when we are in the location
we want to be as we’d fall over. This means the target position will need to be a ”best effort”
battle to keep in the same place as best as we can.

3.4 Communication

The only source of computation used is a single ESP8266 microcontroller, this in combi-
nation with the strict timing requirements on the duration of the control loop means the
communication between the robot and the control/mapping software needs to be quick and
efficient.

4 Approaches

4.1 Balancing

4.2 Odometry

4.3 Target Positions

The target position

4.4 Communication

5 Challanages

5.1 Balancing

Balancing took the longest out every task combined. It required research on not only PID
control loops but also on different libraries and calibration requirements for our MPU6050

gyroscope. These difficulties were compounded by the fact that we did not know which
part/section would cause the robot to ”randomly flail about and violently crash into the
wall/floor”.

3

Bobot

5.2 Odometry

We origionally didn’t have encoders to keep track of our position and instead attempted to
use the accelerometer to calculate displacement to save money on parts. This however, did
not pan out. The first problem we ran into was our heading drifting. We knew it was going
to be an issue after reading docs but tried a good old fassion ”how bad could it possibly be”
and oh boy did it drift fast. The second issue was ”double integration over a noisy inaccurate
signal” lead to our calculated position quickly exiting the stratosphere. These issues very
quickly lead us to just get encoders.

5.3 Target Positions

Using the bias towards a direction by setting the target angle was not the first approach we
used. We originally directly added a movement speed to the motors like we do for turning.
This however caused the robot to become unstable in certain situations. We eventually
abandoned the approach in favor of the one used currently.

5.4 Communication

Since we have limited processing power/time per loop iteration we need to be smart in how
we receive and transmit data to our mapping software. For this reason we designed a state-
less UDP based network protocol overtop the esp8266 Wifi & UDP libraries. [1]

We originally used a TCP+Webserver based library for this as it allowed us to use HTML+JS
to display information but it continually had processing requirements the controller could
not meet.

6 Resources Used

• ESP8266 core libraries to note the Wifi and UDP libraries. [1]

• PID V1 The PID library of choice. [2]

• Adafruit VL53L0X was used the library used to interface with the time of flight sensor
used for mapping. [3]

• The AS5600 library was used to interface with the AS5600 magnetic encoders on each
wheel. [4]

4

Bobot

• The MPU6050 library was used to interface and interpret the accelerometer and gyro-
scope data. [5]. It required modification to work with our hardware as it was a knockoff
and the device ID was different than what it was expecting.

• A blog by the author of the PID library used was very helpful when tuning and con-
figuring the PID controls in the robot. [6]

• A paper on odometry for robots with differential steering which we based our odometry
system off of. [7]

References

[1] “Arduino core for ESP8266 WiFi,” https://github.com/esp8266/Arduino.

[2] Brett Beauregard, “Arduino PID Library,” https://github.com/br3ttb/
Arduino-PID-Library/tree/master.

[3] “Adafruit VL53L0X Library,” https://github.com/adafruit/Adafruit VL53L0X.

[4] “AS5600 Library,” https://github.com/RobTillaart/AS5600.

[5] Electronic Cats, “MPU6050 Library,” https://github.com/ElectronicCats/mpu6050.

[6] Brett Beauregard, “Introducing Proportional On Measurement,” http://
brettbeauregard.com/blog/2017/06/introducing-proportional-on-measurement/.

[7] G.W. Lucas, “A Tutorial and Elementary Trajectory Model for the Differential Steering
System of Robot Wheel Actuators,” https://rossum.sourceforge.net/papers/DiffSteer/.

5

https://github.com/esp8266/Arduino
https://github.com/br3ttb/Arduino-PID-Library/tree/master
https://github.com/br3ttb/Arduino-PID-Library/tree/master
https://github.com/adafruit/Adafruit_VL53L0X
https://github.com/RobTillaart/AS5600
https://github.com/ElectronicCats/mpu6050
http://brettbeauregard.com/blog/2017/06/introducing-proportional-on-measurement/
http://brettbeauregard.com/blog/2017/06/introducing-proportional-on-measurement/
https://rossum.sourceforge.net/papers/DiffSteer/

	Introduction
	Instructions
	Problem Set
	Balancing
	Odometry
	Target Positions
	Communication

	Approaches
	Balancing
	Odometry
	Target Positions
	Communication

	Challanages
	Balancing
	Odometry
	Target Positions
	Communication

	Resources Used

