BLT/include/blt/std/math.h

601 lines
22 KiB
C
Raw Normal View History

2023-01-10 10:45:11 -05:00
/*
* Created by Brett on 09/01/23.
* Licensed under GNU General Public License V3.0
* See LICENSE file for license detail
*/
#ifndef BLT_MATH_H
#define BLT_MATH_H
2023-02-07 22:34:10 -05:00
#include <initializer_list>
2023-02-08 23:01:01 -05:00
#include <cmath>
2023-02-07 22:34:10 -05:00
2023-01-10 10:45:11 -05:00
namespace blt {
2023-02-07 22:34:10 -05:00
template<unsigned long size>
struct vec {
private:
float elements[size]{};
public:
vec() {
for (int i = 0; i < size; i++)
elements[i] = 0;
}
vec(std::initializer_list<float> args): vec() {
for (int i = 0; i < args.size(); i++) {
elements[i] = *(args.begin() + i);
}
}
explicit vec(const float elem[size]) {
for (int i = 0; i < size; i++) {
elements[i] = elem[i];
}
}
vec(const vec<size>& copy): vec(copy.elements) {}
[[nodiscard]] inline float x() const {return elements[0];}
[[nodiscard]] inline float y() const {return elements[1];}
[[nodiscard]] inline float z() const {return elements[2];}
2023-02-11 15:25:28 -05:00
[[nodiscard]] inline float w() const {return elements[3];}
2023-02-07 22:34:10 -05:00
inline float& operator[](int index) {
return elements[index];
}
inline float operator[](int index) const {
return elements[index];
}
inline vec<size>& operator=(float f) {
for (int i = 0; i < size; i++)
elements[i] = f;
return *this;
}
inline vec<size>& operator=(int i) {
for (int _ = 0; _ < size; _++)
elements[_] = i;
return *this;
}
inline vec<size> operator-() {
float negativeCopy[size];
for (int i = 0; i < size; i++)
negativeCopy[i] = -elements[i];
return vec<size>{negativeCopy};
}
inline vec<size>& operator+=(const vec<size>& other) {
for (int i = 0; i < size; i++)
elements[i] += other[i];
return *this;
}
inline vec<size>& operator*=(const vec<size>& other) {
for (int i = 0; i < size; i++)
elements[i] *= other[i];
return *this;
}
inline vec<size>& operator+=(float f) {
for (int i = 0; i < size; i++)
elements[i] += f;
return *this;
}
inline vec<size>& operator*=(float f) {
for (int i = 0; i < size; i++)
elements[i] *= f;
return *this;
}
inline vec<size>& operator-=(const vec<size>& other) {
for (int i = 0; i < size; i++)
elements[i] -= other[i];
return *this;
}
inline vec<size>& operator-=(float f) {
for (int i = 0; i < size; i++)
elements[i] -= f;
return *this;
}
2023-02-11 15:25:28 -05:00
/**
* performs the dot product of left * right
*/
static inline float dot(const vec<size>& left, const vec<size>& right) {
float dot = 0;
for (int i = 0; i < size; i++)
dot += left[i] * right[i];
return dot;
}
2023-02-07 22:34:10 -05:00
};
template<unsigned long size>
inline vec<size> operator+(const vec<size>& left, const vec<size>& right) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = left[i] + right[i];
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator-(const vec<size>& left, const vec<size>& right) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = left[i] - right[i];
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator+(const vec<size>& left, float f) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = left[i] + f;
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator-(const vec<size>& left, float f) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = left[i] + f;
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator+(float f, const vec<size>& right) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = f + right[i];
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator-(float f, const vec<size>& right) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = f - right[i];
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator*(const vec<size>& left, const vec<size>& right) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = left[i] * right[i];
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator*(const vec<size>& left, float f) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = left[i] * f;
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator*(float f, const vec<size>& right) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = f * right[i];
return vec<size>{initializer};
}
template<unsigned long size>
inline vec<size> operator/(const vec<size>& left, float f) {
float initializer[size];
for (int i = 0; i < size; i++)
initializer[i] = left[i] / f;
return vec<size>{initializer};
}
typedef vec<2> vec2;
typedef vec<3> vec3;
typedef vec<4> vec4;
class mat4x4 {
protected:
// 4x4 = 16
union dataType {
float single[16];
float dim[4][4];
};
dataType data{};
friend mat4x4 operator+(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator-(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator*(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator*(float c, const mat4x4& v);
friend mat4x4 operator*(const mat4x4& v, float c);
friend mat4x4 operator/(const mat4x4& v, float c);
friend mat4x4 operator/(float c, const mat4x4& v);
public:
mat4x4() {
for (float& i : data.single) {
i = 0;
}
// set identity matrix default
m00(1);
m11(1);
m22(1);
m33(1);
}
/*explicit mat4x4(glm::mat4x4 mat) {
m00(mat[0][0]);
m01(mat[1][0]);
m02(mat[2][0]);
m03(mat[3][0]);
m10(mat[0][1]);
m11(mat[1][1]);
m12(mat[2][1]);
m13(mat[3][1]);
m20(mat[0][2]);
m21(mat[1][2]);
m22(mat[2][2]);
m23(mat[3][2]);
m30(mat[0][3]);
m31(mat[1][3]);
m32(mat[2][3]);
m33(mat[3][3]);
}*/
mat4x4(const mat4x4& mat) {
for (int i = 0; i < 16; i++) {
data.single[i] = mat.data.single[i];
}
}
explicit mat4x4(const float dat[16]) {
for (int i = 0; i < 16; i++) {
data.single[i] = dat[i];
}
}
inline mat4x4& translate(float x, float y, float z) {
m03(x);
m13(y);
m23(z);
return *this;
}
inline mat4x4& translate(const vec4& vec) { return translate(vec[0], vec[1], vec[2]); }
inline mat4x4& translate(const vec3& vec) { return translate(vec[0], vec[1], vec[2]); }
inline mat4x4& scale(float x, float y, float z) {
m00(x);
m11(y);
m22(z);
return *this;
}
inline mat4x4& scale(const vec4& vec) { return scale(vec[0], vec[1], vec[2]); }
inline mat4x4& scale(const vec3& vec) { return scale(vec[0], vec[1], vec[2]); }
inline float* ptr() { return data.single; }
mat4x4& transpose() {
mat4x4 copy{*this};
m00(copy.m00());
m01(copy.m10());
m02(copy.m20());
m03(copy.m30());
m10(copy.m01());
m11(copy.m11());
m12(copy.m21());
m13(copy.m31());
m20(copy.m02());
m21(copy.m12());
m22(copy.m22());
m23(copy.m32());
m30(copy.m03());
m31(copy.m13());
m32(copy.m23());
m33(copy.m33());
return *this;
}
// Due to the conversion between the 2d array -> 1d array we must transpose the values.
// the old system has been archived (commented) for future debugging
// [[nodiscard]] inline float m00() const { return data.dim[0][0]; }
// [[nodiscard]] inline float m10() const { return data.dim[1][0]; }
// [[nodiscard]] inline float m20() const { return data.dim[2][0]; }
// [[nodiscard]] inline float m30() const { return data.dim[3][0]; }
// [[nodiscard]] inline float m01() const { return data.dim[0][1]; }
// [[nodiscard]] inline float m11() const { return data.dim[1][1]; }
// [[nodiscard]] inline float m21() const { return data.dim[2][1]; }
// [[nodiscard]] inline float m31() const { return data.dim[3][1]; }
// [[nodiscard]] inline float m02() const { return data.dim[0][2]; }
// [[nodiscard]] inline float m12() const { return data.dim[1][2]; }
// [[nodiscard]] inline float m22() const { return data.dim[2][2]; }
// [[nodiscard]] inline float m32() const { return data.dim[3][2]; }
// [[nodiscard]] inline float m03() const { return data.dim[0][3]; }
// [[nodiscard]] inline float m13() const { return data.dim[1][3]; }
// [[nodiscard]] inline float m23() const { return data.dim[2][3]; }
// [[nodiscard]] inline float m33() const { return data.dim[3][3]; }
// [[nodiscard]] inline float m(int i, int j) const { return data.dim[i][j]; };
// inline float m00(float d) { return data.dim[0][0] = d; }
// inline float m10(float d) { return data.dim[1][0] = d; }
// inline float m20(float d) { return data.dim[2][0] = d; }
// inline float m30(float d) { return data.dim[3][0] = d; }
// inline float m01(float d) { return data.dim[0][1] = d; }
// inline float m11(float d) { return data.dim[1][1] = d; }
// inline float m21(float d) { return data.dim[2][1] = d; }
// inline float m31(float d) { return data.dim[3][1] = d; }
// inline float m02(float d) { return data.dim[0][2] = d; }
// inline float m12(float d) { return data.dim[1][2] = d; }
// inline float m22(float d) { return data.dim[2][2] = d; }
// inline float m32(float d) { return data.dim[3][2] = d; }
// inline float m03(float d) { return data.dim[0][3] = d; }
// inline float m13(float d) { return data.dim[1][3] = d; }
// inline float m23(float d) { return data.dim[2][3] = d; }
// inline float m33(float d) { return data.dim[3][3] = d; }
[[nodiscard]] inline float m00() const { return data.dim[0][0]; }
[[nodiscard]] inline float m10() const { return data.dim[0][1]; }
[[nodiscard]] inline float m20() const { return data.dim[0][2]; }
[[nodiscard]] inline float m30() const { return data.dim[0][3]; }
[[nodiscard]] inline float m01() const { return data.dim[1][0]; }
[[nodiscard]] inline float m11() const { return data.dim[1][1]; }
[[nodiscard]] inline float m21() const { return data.dim[1][2]; }
[[nodiscard]] inline float m31() const { return data.dim[1][3]; }
[[nodiscard]] inline float m02() const { return data.dim[2][0]; }
[[nodiscard]] inline float m12() const { return data.dim[2][1]; }
[[nodiscard]] inline float m22() const { return data.dim[2][2]; }
[[nodiscard]] inline float m32() const { return data.dim[2][3]; }
[[nodiscard]] inline float m03() const { return data.dim[3][0]; }
[[nodiscard]] inline float m13() const { return data.dim[3][1]; }
[[nodiscard]] inline float m23() const { return data.dim[3][2]; }
[[nodiscard]] inline float m33() const { return data.dim[3][3]; }
[[nodiscard]] inline float m(int i, int j) const { return data.dim[i][j]; };
inline float m00(float d) { return data.dim[0][0] = d; }
inline float m10(float d) { return data.dim[0][1] = d; }
inline float m20(float d) { return data.dim[0][2] = d; }
inline float m30(float d) { return data.dim[0][3] = d; }
inline float m01(float d) { return data.dim[1][0] = d; }
inline float m11(float d) { return data.dim[1][1] = d; }
inline float m21(float d) { return data.dim[1][2] = d; }
inline float m31(float d) { return data.dim[1][3] = d; }
inline float m02(float d) { return data.dim[2][0] = d; }
inline float m12(float d) { return data.dim[2][1] = d; }
inline float m22(float d) { return data.dim[2][2] = d; }
inline float m32(float d) { return data.dim[2][3] = d; }
inline float m03(float d) { return data.dim[3][0] = d; }
inline float m13(float d) { return data.dim[3][1] = d; }
inline float m23(float d) { return data.dim[3][2] = d; }
inline float m33(float d) { return data.dim[3][3] = d; }
inline float m(int i, int j, float d) { return data.dim[i][j] = d; };
// inline float* operator [](int _i) {
// return data.dim[_i];
// }
[[nodiscard]] float determinant() const {
return m00() * (m11() * m22() * m33() + m12() * m23() * m31() + m13() * m21() * m32()
- m31() * m22() * m13() - m32() * m23() * m11() - m33() * m21() * m12())
- m10() * (m01() * m22() * m33() + m02() * m23() * m31() + m03() * m21() * m32()
- m31() * m32() * m03() - m32() * m23() * m01() - m33() * m21() * m02())
+ m20() * (m01() * m12() * m33() + m02() * m13() * m31() + m03() * m11() * m32()
- m31() * m12() * m03() - m32() * m13() * m01() - m33() * m11() * m02())
- m30() * (m01() * m12() * m23() + m02() * m13() * m21() + m03() * m11() * m22()
- m21() * m12() * m03() - m22() * m13() * m01() - m23() * m11() * m02());
}
};
// adds the two mat4x4 left and right
inline mat4x4 operator+(const mat4x4& left, const mat4x4& right) {
float data[16];
for (int i = 0; i < 16; i++)
data[i] = left.data.single[i] + right.data.single[i];
return mat4x4{data};
}
// subtracts the right mat4x4 from the left.
inline mat4x4 operator-(const mat4x4& left, const mat4x4& right) {
float data[16];
for (int i = 0; i < 16; i++)
data[i] = left.data.single[i] - right.data.single[i];
return mat4x4{data};
}
// since matrices are made identity by default, we need to create the result collector matrix without identity
// otherwise the diagonal will be 1 off and cause weird results (see black screen issue)
constexpr float emptyMatrix[16] = {0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
// multiples the left with the right
inline mat4x4 operator*(const mat4x4& left, const mat4x4& right) {
mat4x4 mat{emptyMatrix};
// TODO: check avx with this??
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j));
}
}
}
return mat;
}
// multiplies the const c with each element in the mat4x4 v
inline mat4x4 operator*(float c, const mat4x4& v) {
mat4x4 mat{};
for (int i = 0; i < 16; i++) {
mat.data.single[i] = c * v.data.single[i];
}
return mat;
}
// same as above but for right sided constants
inline mat4x4 operator*(const mat4x4& v, float c) {
mat4x4 mat{};
for (int i = 0; i < 16; i++) {
mat.data.single[i] = v.data.single[i] * c;
}
return mat;
}
// divides the mat4x4 by the constant c
inline mat4x4 operator/(const mat4x4& v, float c) {
mat4x4 mat{};
for (int i = 0; i < 16; i++) {
mat.data.single[i] = v.data.single[i] / c;
}
return mat;
}
// divides each element in the mat4x4 by over the constant
inline mat4x4 operator/(float c, const mat4x4& v) {
mat4x4 mat{};
for (int i = 0; i < 16; i++) {
mat.data.single[i] = c / v.data.single[i];
}
return mat;
}
2023-02-08 23:01:01 -05:00
// https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
2023-02-08 23:21:25 -05:00
// https://ogldev.org/www/tutorial12/tutorial12.html
static inline mat4x4 perspective(float fov, float aspect_ratio, float near, float far){
2023-02-11 12:09:15 -05:00
mat4x4 perspectiveMat4x4 {emptyMatrix};
2023-02-08 23:01:01 -05:00
2023-02-11 12:07:03 -05:00
float oneOverNearMFar = 1.0f / (near - far);
2023-02-11 12:05:47 -05:00
2023-02-08 23:21:25 -05:00
float halfTan = tanf(fov * 0.5f * (float)M_PI / 180.0f);
2023-02-11 12:53:32 -05:00
// this should be all it takes to create a mostly correct projection matrix
// the values are transposed because my matrix implementation is terrible.
// TODO: redo matrix implementation
2023-02-11 12:09:15 -05:00
perspectiveMat4x4.m00(float(1.0 / (aspect_ratio * halfTan)));
perspectiveMat4x4.m11(float(1.0 / halfTan));
perspectiveMat4x4.m22(float(-((far + near) / (far - near))));
perspectiveMat4x4.m32(-1);
perspectiveMat4x4.m23(float(-((2 * near * far) / (far - near))));
2023-02-08 23:01:01 -05:00
return perspectiveMat4x4;
}
2023-02-15 00:41:06 -05:00
static inline mat4x4 ortho(float left, float right, float top, float bottom, float near, float far){
mat4x4 perspectiveMat4x4 {emptyMatrix};
perspectiveMat4x4.m00(2/(right - left));
perspectiveMat4x4.m11(2/(top-bottom));
perspectiveMat4x4.m22(2/(far-near));
perspectiveMat4x4.m33(1);
perspectiveMat4x4.m03(-(right + left) / (right - left));
perspectiveMat4x4.m13(-(top + bottom) / (top - bottom));
perspectiveMat4x4.m23(-(far + near) / (far - near));
return perspectiveMat4x4;
}
2023-02-07 22:34:10 -05:00
// inline std::ostream& operator<<(std::ostream& out, const mat4x4& v) {
// return out << "\rMatrix4x4{" << v.m00() << ", " << v.m01() << ", " << v.m02() << ", " << v.m03() << "} \n"\
// << " {" << v.m10() << ", " << v.m11() << ", " << v.m12() << ", " << v.m13() << "} \n"\
// << " {" << v.m20() << ", " << v.m21() << ", " << v.m22() << ", " << v.m23() << "} \n"\
// << " {" << v.m30() << ", " << v.m31() << ", " << v.m32() << ", " << v.m33() << "} \n";
// }
2023-01-10 10:45:11 -05:00
2023-02-16 00:03:01 -05:00
template<typename T, int Size>
class averagizer_o_matic {
private:
2023-02-16 00:13:26 -05:00
T* data;
2023-02-16 00:03:01 -05:00
int index = 0;
2023-02-16 00:06:36 -05:00
int m_default = 0;
2023-02-16 00:03:01 -05:00
public:
averagizer_o_matic(): averagizer_o_matic(0) {}
explicit averagizer_o_matic(T default_value){
2023-02-16 00:13:26 -05:00
data = new T[Size];
2023-02-16 00:03:01 -05:00
for (int i = 0; i < Size; i++){
data[i] = default_value;
}
2023-02-16 00:06:36 -05:00
m_default = default_value;
2023-02-16 00:03:01 -05:00
}
void insert(T t){
data[index++] = t;
if (index >= Size)
index = 0;
}
T average(){
T total = 0;
for (int i = 0; i < Size; i++){
total += data[i];
}
2023-02-16 00:08:39 -05:00
return total / Size;
2023-02-16 00:03:01 -05:00
}
~averagizer_o_matic(){
delete[] data;
}
};
2023-01-10 10:45:11 -05:00
}
#endif //BLT_MATH_H