add return statement to matrix class

v1
Brett 2023-04-21 21:04:19 -04:00
parent 94624bddec
commit 4b0226929b
2 changed files with 15 additions and 15 deletions

View File

@ -62,6 +62,7 @@ namespace blt {
for (int i = 0; i < 16; i++) {
data.single[i] = copy.data.single[i];
}
return *this;
}
explicit mat4x4(const float dat[16]) {

View File

@ -21,14 +21,9 @@ namespace blt {
}
#define MSVC_COMPILER (!defined(__GNUC__) && !defined(__clang__))
#ifdef MSVC_COMPILER
template<typename T, uint32_t size>
#else
// STFINAE is broken in MSVC?
template<typename T, uint32_t size, typename std::enable_if<std::is_arithmetic<T>::value>::type* = nullptr>
#endif
struct vec {
private:
T elements[size]{};
@ -159,7 +154,9 @@ namespace blt {
return dot;
}
static inline constexpr vec<T, size> cross(const vec<T, size>& left, const vec<T, size>& right) {
static inline constexpr vec<T, size> cross(
const vec<T, size>& left, const vec<T, size>& right
) {
// cross is only defined on vectors of size 3. 2D could be implemented, which is a TODO
static_assert(size == 3);
return {left.y() * right.z() - left.z() * right.y(),
@ -167,7 +164,9 @@ namespace blt {
left.x() * right.y() - left.y() * right.x()};
}
static inline constexpr vec<T, size> project(const vec<T, size>& u, const vec<T, size>& v){
static inline constexpr vec<T, size> project(
const vec<T, size>& u, const vec<T, size>& v
) {
T du = dot(u);
T dv = dot(v);
return (du / dv) * v;
@ -301,25 +300,25 @@ namespace blt {
namespace vec_algorithm {
static inline void findOrthogonalBasis(const vec3& v, vec3& v1, vec3& v2, vec3& v3) {
v1 = v.normalize();
vec3 arbitraryVector{1, 0, 0};
if (std::abs(vec3::dot(v, arbitraryVector)) > 0.9) {
arbitraryVector = vec3{0, 1, 0};
}
v2 = vec3::cross(v, arbitraryVector).normalize();
v3 = vec3::cross(v1, v2);
}
// Gram-Schmidt orthonormalization algorithm
static inline void gramSchmidt(std::vector<vec3>& vectors) {
int n = (int)vectors.size();
int n = (int) vectors.size();
std::vector<vec3> basis;
// normalize first vector
basis.push_back(vectors[0]);
basis[0] = basis[0].normalize();
// iterate over the rest of the vectors
for (int i = 1; i < n; ++i) {
// subtract the projections of the vector onto the previous basis vectors
@ -334,7 +333,7 @@ namespace blt {
new_vector = new_vector.normalize();
basis.push_back(new_vector);
}
vectors = basis;
}
}