change mat4x4 internal structure, adjugate and inverse now works

determinant probably does not
v1
Brett 2024-05-01 12:11:53 -04:00
parent 0a04408e70
commit e6b4c4a330
2 changed files with 130 additions and 90 deletions

View File

@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.20)
include(cmake/color.cmake)
set(BLT_VERSION 0.16.16)
set(BLT_VERSION 0.16.17)
set(BLT_TEST_VERSION 0.0.1)
set(BLT_TARGET BLT)

View File

@ -9,6 +9,7 @@
#include <blt/math/vectors.h>
#include <cstring>
#include <type_traits>
#ifndef M_PI
// MSVC does not have M_PI
@ -20,14 +21,16 @@ namespace blt
class mat4x4
{
static_assert(std::is_trivially_copyable_v<blt::vec4> && "Vector must be trivially copyable!");
protected:
// 4x4 = 16
union dataType
{
float single[16];
float dim[4][4];
};
dataType data{};
// union dataType
// {
// float single[16];
// float dim[4][4];
// blt::vec4 v[4];
// };
blt::vec4 data[4];
friend mat4x4 operator+(const mat4x4& left, const mat4x4& right);
@ -44,10 +47,20 @@ namespace blt
friend mat4x4 operator/(float c, const mat4x4& v);
public:
static mat4x4 make_empty()
{
mat4x4 ret;
ret.m00(0);
ret.m11(0);
ret.m22(0);
ret.m33(0);
return ret;
}
mat4x4()
{
for (float& i : data.single)
i = 0;
// for (float& i : data.single)
// i = 0;
// set identity matrix default
m00(1);
m11(1);
@ -58,17 +71,21 @@ namespace blt
mat4x4(const blt::vec4& c1, const blt::vec4& c2, const blt::vec4& c3, const blt::vec4& c4)
{
// dangerous?
std::memcpy(data.dim[0], c1.data(), 4 * sizeof(float));
std::memcpy(data.dim[1], c2.data(), 4 * sizeof(float));
std::memcpy(data.dim[2], c3.data(), 4 * sizeof(float));
std::memcpy(data.dim[3], c4.data(), 4 * sizeof(float));
// std::memcpy(data.dim[0], c1.data(), 4 * sizeof(float));
// std::memcpy(data.dim[1], c2.data(), 4 * sizeof(float));
// std::memcpy(data.dim[2], c3.data(), 4 * sizeof(float));
// std::memcpy(data.dim[3], c4.data(), 4 * sizeof(float));
data[0] = c1;
data[1] = c2;
data[2] = c3;
data[3] = c4;
}
mat4x4(const mat4x4& mat)
{
for (int i = 0; i < 16; i++)
for (int i = 0; i < 4; i++)
{
data.single[i] = mat.data.single[i];
data[i] = mat.data[i];
}
}
@ -76,19 +93,24 @@ namespace blt
{
if (&copy == this)
return *this;
for (int i = 0; i < 16; i++)
for (int i = 0; i < 4; i++)
{
data.single[i] = copy.data.single[i];
data[i] = copy.data[i];
}
return *this;
}
explicit mat4x4(const float dat[16])
{
for (int i = 0; i < 16; i++)
{
data.single[i] = dat[i];
}
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
data[i][j] = dat[j + i * 4];
}
explicit mat4x4(const blt::vec4 dat[4])
{
for (int i = 0; i < 4; i++)
data[i] = dat[i];
}
inline mat4x4& translate(float x, float y, float z)
@ -203,63 +225,80 @@ namespace blt
[[nodiscard]] mat4x4 adjugate() const
{
mat4x4 ad;
ad.w11(w22() * w33() * w44() + w23() * w34() * w42() + w24() * w32() * w43()
- w24() * w33() * w42() - w23() * w32() * w44() - w22() * w34() * w43());
ad.w12(w21() * w33() * w44() + w23() * w34() * w41() + w24() * w31() * w43()
- w24() * w33() * w41() - w23() * w31() * w44() - w21() * w34() * w43());
ad.w13(w21() * w32() * w44() + w22() * w34() * w41() + w24() * w31() * w42()
- w24() * w32() * w41() - w22() * w31() * w44() - w21() * w34() * w42());
ad.w14(w21() * w32() * w43() + w22() * w33() * w41() + w23() * w31() * w42()
- w23() * w32() * w41() - w22() * w31() * w43() - w21() * w33() * w42());
auto& m = *this;
auto Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
auto Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
auto Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
ad.w21(w12() * w33() * w44() + w13() * w34() * w42() + w14() * w32() * w43()
- w14() * w33() * w42() - w13() * w32() * w44() - w12() * w34() * w43());
ad.w22(w11() * w33() * w44() + w13() * w34() * w41() + w14() * w31() * w43()
- w14() * w33() * w41() - w13() * w31() * w44() - w11() * w34() * w43());
ad.w23(w11() * w32() * w44() + w12() * w34() * w41() + w14() * w31() * w42()
- w14() * w32() * w41() - w12() * w31() * w44() - w11() * w34() * w42());
ad.w24(w11() * w32() * w43() + w12() * w33() * w41() + w13() * w31() * w42()
- w13() * w32() * w41() - w12() * w31() * w43() - w11() * w33() * w42());
auto Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
auto Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
auto Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
ad.w31(w12() * w23() * w44() + w13() * w24() * w42() + w14() * w22() * w43()
- w14() * w23() * w42() - w13() * w22() * w44() - w12() * w24() * w43());
ad.w32(w11() * w23() * w44() + w13() * w24() * w41() + w14() * w21() * w43()
- w14() * w23() * w41() - w13() * w21() * w44() - w11() * w24() * w43());
ad.w33(w11() * w22() * w44() + w12() * w24() * w41() + w14() * w21() * w42()
- w14() * w22() * w41() - w12() * w21() * w44() - w11() * w24() * w42());
ad.w34(w11() * w22() * w43() + w12() * w23() * w41() + w13() * w21() * w42()
- w13() * w22() * w41() - w12() * w21() * w43() - w11() * w23() * w42());
auto Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
auto Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
auto Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
ad.w41(w12() * w23() * w34() + w13() * w24() * w32() + w14() * w22() * w33()
- w14() * w23() * w32() - w13() * w22() * w34() - w12() * w24() * w33());
ad.w42(w11() * w23() * w34() + w13() * w24() * w31() + w14() * w21() * w33()
- w14() * w23() * w31() - w13() * w21() * w34() - w11() * w24() * w33());
ad.w43(w11() * w22() * w34() + w12() * w24() * w31() + w14() * w21() * w32()
- w14() * w22() * w31() - w12() * w21() * w34() - w11() * w24() * w32());
ad.w44(w11() * w22() * w33() + w12() * w23() * w31() + w13() * w21() * w32()
- w13() * w22() * w31() - w12() * w21() * w33() - w11() * w23() * w32());
auto Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
auto Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
auto Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
for (int i = 1; i <= 4; i++)
{
for (int j = 1; j <= 4; j++)
{
auto v = static_cast<float>(std::pow(-1, j + i));
ad.w(j, i, v * ad.w(j, i));
}
}
return ad;
auto Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
auto Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
auto Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
auto Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
auto Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
auto Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
blt::vec4 Fac0(Coef00, Coef00, Coef02, Coef03);
blt::vec4 Fac1(Coef04, Coef04, Coef06, Coef07);
blt::vec4 Fac2(Coef08, Coef08, Coef10, Coef11);
blt::vec4 Fac3(Coef12, Coef12, Coef14, Coef15);
blt::vec4 Fac4(Coef16, Coef16, Coef18, Coef19);
blt::vec4 Fac5(Coef20, Coef20, Coef22, Coef23);
blt::vec4 Vec0(m[1][0], m[0][0], m[0][0], m[0][0]);
blt::vec4 Vec1(m[1][1], m[0][1], m[0][1], m[0][1]);
blt::vec4 Vec2(m[1][2], m[0][2], m[0][2], m[0][2]);
blt::vec4 Vec3(m[1][3], m[0][3], m[0][3], m[0][3]);
blt::vec4 Inv0(Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2);
blt::vec4 Inv1(Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4);
blt::vec4 Inv2(Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5);
blt::vec4 Inv3(Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5);
blt::vec4 SignA(+1, -1, +1, -1);
blt::vec4 SignB(-1, +1, -1, +1);
return mat4x4(Inv0 * SignA, Inv1 * SignB, Inv2 * SignA, Inv3 * SignB);
}
[[nodiscard]] mat4x4 inverse() const
{
auto ad = adjugate();
auto d = 1 / determinant();
return d * ad;
auto& m = *this;
auto Inverse = adjugate();
blt::vec4 Row0(Inverse[0][0], Inverse[1][0], Inverse[2][0], Inverse[3][0]);
blt::vec4 Dot0(m[0] * Row0);
auto Dot1 = (Dot0.x() + Dot0.y()) + (Dot0.z() + Dot0.w());
auto OneOverDeterminant = 1.0f / Dot1;
return Inverse * OneOverDeterminant;
}
inline const blt::vec4& operator[](int column) const
{
return data[column];
}
inline blt::vec4& operator[](int column)
{
return data[column];
}
[[nodiscard]] inline float m(int row, int column) const
{ return data.single[row + column * 4]; };
{ return data[column][row]; };
[[nodiscard]] inline float m00() const
{ return m(0, 0); }
@ -310,7 +349,7 @@ namespace blt
{ return m(3, 3); }
inline float m(int row, int column, float value)
{ return data.single[row + column * 4] = value; };
{ return data[column][row] = value; };
inline float m00(float d)
{ return m(0, 0, d); }
@ -361,7 +400,7 @@ namespace blt
{ return m(3, 3, d); }
[[nodiscard]] inline float w(int row, int column) const
{ return data.single[(row - 1) + (column - 1) * 4]; };
{ return data[column - 1][row - 1]; };
[[nodiscard]] inline float w11() const
{ return m(0, 0); }
@ -412,7 +451,7 @@ namespace blt
{ return m(3, 3); }
inline float w(int row, int column, float value)
{ return data.single[(row - 1) + (column - 1) * 4] = value; };
{ return data[column - 1][row - 1] = value; };
inline float w11(float d)
{ return m(0, 0, d); }
@ -463,25 +502,25 @@ namespace blt
{ return m(3, 3, d); }
inline float* ptr()
{ return data.single; }
{ return data[0].data(); }
};
// adds the two mat4x4 left and right
inline mat4x4 operator+(const mat4x4& left, const mat4x4& right)
{
float data[16];
for (int i = 0; i < 16; i++)
data[i] = left.data.single[i] + right.data.single[i];
return mat4x4{data};
mat4x4 ret = left;
for (int i = 0; i < 4; i++)
ret[i] += right.data[i];
return ret;
}
// subtracts the right mat4x4 from the left.
inline mat4x4 operator-(const mat4x4& left, const mat4x4& right)
{
float data[16];
for (int i = 0; i < 16; i++)
data[i] = left.data.single[i] - right.data.single[i];
return mat4x4{data};
mat4x4 ret = left;
for (int i = 0; i < 4; i++)
ret[i] -= right.data[i];
return ret;
}
// since matrices are made identity by default, we need to create the result collector matrix without identity
@ -494,7 +533,7 @@ namespace blt
// multiples the left with the right
inline mat4x4 operator*(const mat4x4& left, const mat4x4& right)
{
mat4x4 mat{emptyMatrix};
mat4x4 mat = mat4x4::make_empty();
// TODO: check avx with this??
for (int i = 0; i < 4; i++)
@ -542,9 +581,9 @@ namespace blt
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
for (int i = 0; i < 4; i++)
{
mat.data.single[i] = c * v.data.single[i];
mat.data[i] = c * v.data[i];
}
return mat;
@ -555,9 +594,9 @@ namespace blt
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
for (int i = 0; i < 4; i++)
{
mat.data.single[i] = v.data.single[i] * c;
mat.data[i] = v.data[i] * c;
}
return mat;
@ -568,9 +607,9 @@ namespace blt
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
for (int i = 0; i < 4; i++)
{
mat.data.single[i] = v.data.single[i] / c;
mat.data[i] = v.data[i] / c;
}
return mat;
@ -581,9 +620,10 @@ namespace blt
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
for (int i = 0; i < 4; i++)
{
mat.data.single[i] = c / v.data.single[i];
for (int j = 0; j < 4; j++)
mat.data[i][j] = c / v.data[i][j];
}
return mat;
@ -594,7 +634,7 @@ namespace blt
// http://www.songho.ca/opengl/gl_projectionmatrix.html
static inline mat4x4 perspective(float fov, float aspect_ratio, float near, float far)
{
mat4x4 perspectiveMat4x4{emptyMatrix};
mat4x4 perspectiveMat4x4 = mat4x4::make_empty();
float halfTan = tanf(fov * 0.5f * (float) M_PI / 180.0f);
perspectiveMat4x4.m00(float(1.0 / (aspect_ratio * halfTan)));
@ -608,7 +648,7 @@ namespace blt
static inline mat4x4 ortho(float left, float right, float top, float bottom, float near, float far)
{
mat4x4 perspectiveMat4x4{emptyMatrix};
mat4x4 perspectiveMat4x4 = mat4x4::make_empty();
perspectiveMat4x4.m00(2 / (right - left));
perspectiveMat4x4.m11(2 / (top - bottom));