/* * Created by Brett on 28/02/23. * Licensed under GNU General Public License V3.0 * See LICENSE file for license detail */ #ifndef BLT_TESTS_VECTORS_H #define BLT_TESTS_VECTORS_H #include #include namespace blt { constexpr float EPSILON = 0.0001f; static inline constexpr bool f_equal(float v1, float v2) { return v1 >= v2 - EPSILON && v1 <= v2 + EPSILON; } template struct vec { private: T elements[size]{}; public: vec() { for (int i = 0; i < size; i++) elements[i] = 0; } vec(std::initializer_list args): vec() { for (int i = 0; i < args.size(); i++) { elements[i] = *(args.begin() + i); } } explicit vec(const T elem[size]) { for (int i = 0; i < size; i++) { elements[i] = elem[i]; } } vec(const vec& copy): vec(copy.elements) {} [[nodiscard]] inline T x() const { return elements[0]; } [[nodiscard]] inline T y() const { static_assert(size > 1); return elements[1]; } [[nodiscard]] inline T z() const { static_assert(size > 2); return elements[2]; } [[nodiscard]] inline T w() const { static_assert(size > 3); return elements[3]; } [[nodiscard]] inline T magnitude() const { T total = 0; for (int i = 0; i < size; i++) total += elements[i] * elements[i]; return std::sqrt(total); } [[nodiscard]] inline vec normalize() const { auto mag = this->magnitude(); if (mag == 0) return *this; return *this / mag; } inline T& operator[](int index) { return elements[index]; } inline T operator[](int index) const { return elements[index]; } inline vec& operator=(T v) { for (int i = 0; i < size; i++) elements[i] = v; return *this; } inline vec operator-() { T negativeCopy[size]; for (int i = 0; i < size; i++) negativeCopy[i] = -elements[i]; return vec{negativeCopy}; } inline vec& operator+=(const vec& other) { for (int i = 0; i < size; i++) elements[i] += other[i]; return *this; } inline vec& operator*=(const vec& other) { for (int i = 0; i < size; i++) elements[i] *= other[i]; return *this; } inline vec& operator+=(T f) { for (int i = 0; i < size; i++) elements[i] += f; return *this; } inline vec& operator*=(T f) { for (int i = 0; i < size; i++) elements[i] *= f; return *this; } inline vec& operator-=(const vec& other) { for (int i = 0; i < size; i++) elements[i] -= other[i]; return *this; } inline vec& operator-=(T f) { for (int i = 0; i < size; i++) elements[i] -= f; return *this; } /** * performs the dot product of left * right */ static inline constexpr T dot(const vec& left, const vec& right) { T dot = 0; for (int i = 0; i < size; i++) dot += left[i] * right[i]; return dot; } static inline constexpr vec cross(const vec& left, const vec& right) { // cross is only defined on vectors of size 3. 2D could be implemented, which is a TODO static_assert(size == 3); return {left.y() * right.z() - left.z() * right.y(), left.z() * right.x() - left.x() * right.z(), left.x() * right.y() - left.y() * right.x()}; } static inline constexpr vec project(const vec& u, const vec& v){ float du = dot(u); float dv = dot(v); return (du / dv) * v; } }; template inline constexpr vec operator+(const vec& left, const vec& right) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = left[i] + right[i]; return vec{initializer}; } template inline constexpr vec operator-(const vec& left, const vec& right) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = left[i] - right[i]; return vec{initializer}; } template inline constexpr vec operator+(const vec& left, float f) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = left[i] + f; return vec{initializer}; } template inline constexpr vec operator-(const vec& left, float f) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = left[i] + f; return vec{initializer}; } template inline constexpr vec operator+(float f, const vec& right) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = f + right[i]; return vec{initializer}; } template inline constexpr vec operator-(float f, const vec& right) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = f - right[i]; return vec{initializer}; } template inline constexpr vec operator*(const vec& left, const vec& right) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = left[i] * right[i]; return vec{initializer}; } template inline constexpr vec operator*(const vec& left, float f) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = left[i] * f; return vec{initializer}; } template inline constexpr vec operator*(float f, const vec& right) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = f * right[i]; return vec{initializer}; } template inline constexpr vec operator/(const vec& left, float f) { T initializer[size]; for (int i = 0; i < size; i++) initializer[i] = left[i] / f; return vec{initializer}; } template inline constexpr bool operator==(const vec& left, const vec& right) { for (int i = 0; i < size; i++) if (left[i] != right[i]) return false; return true; } template inline constexpr bool operator&&(const vec& left, const vec& right) { for (int i = 0; i < size; i++) if (!f_equal(left[i], right[i])) return false; return true; } typedef vec vec2f; typedef vec vec3f; typedef vec vec4f; typedef vec vec2d; typedef vec vec3d; typedef vec vec4d; typedef vec vec2i; typedef vec vec3i; typedef vec vec4i; typedef vec vec2l; typedef vec vec3l; typedef vec vec4l; typedef vec vec2ui; typedef vec vec3ui; typedef vec vec4ui; typedef vec vec2ul; typedef vec vec3ul; typedef vec vec4ul; typedef vec2f vec2; typedef vec3f vec3; typedef vec4f vec4; namespace vec { void findOrthogonalBasis(const vec3& v, vec3& v1, vec3& v2, vec3& v3) { v1 = v.normalize(); vec3 arbitraryVector{1, 0, 0}; if (std::abs(vec3::dot(v, arbitraryVector)) > 0.9) { arbitraryVector = vec3{0, 1, 0}; } v2 = vec3::cross(v, arbitraryVector).normalize(); v3 = vec3::cross(v1, v2); } // Gram-Schmidt orthonormalization algorithm void gramSchmidt(std::vector& vectors) { int n = (int)vectors.size(); std::vector basis; // normalize first vector basis.push_back(vectors[0]); basis[0] = basis[0].normalize(); // iterate over the rest of the vectors for (int i = 1; i < n; ++i) { // subtract the projections of the vector onto the previous basis vectors vec3 new_vector = vectors[i]; for (int j = 0; j < i; ++j) { float projection = vec3::dot(vectors[i], basis[j]); new_vector[0] -= projection * basis[j].x(); new_vector[1] -= projection * basis[j].y(); new_vector[2] -= projection * basis[j].z(); } // normalize the new basis vector new_vector = new_vector.normalize(); basis.push_back(new_vector); } vectors = basis; } } } #endif //BLT_TESTS_VECTORS_H