#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. */ #ifndef BLT_ITERATOR_ITER_COMMON #define BLT_ITERATOR_ITER_COMMON #include <type_traits> #include <iterator> #include <blt/std/types.h> #include <blt/iterator/fwddecl.h> #include <blt/meta/meta.h> #include <blt/meta/iterator.h> #include <functional> #include <optional> #include <blt/meta/type_traits.h> namespace blt::iterator { namespace detail { template<typename T> static auto forward_as_tuple(T&& t) -> decltype(auto) { using Decay = std::decay_t<T>; static_assert(!(meta::is_tuple_v<Decay> || meta::is_pair_v<Decay>), "Tuple or pair passed to forward_as_tuple! Must not be a tuple!"); if constexpr (std::is_lvalue_reference_v<T>) { return std::forward_as_tuple(std::forward<T>(t)); } else { return std::make_tuple(std::forward<T>(t)); } } template <typename Tuple> static auto ensure_tuple(Tuple&& tuple) -> decltype(auto) { using Decay = std::decay_t<Tuple>; if constexpr (meta::is_tuple_v<Decay> || meta::is_pair_v<Decay>) { return std::forward<Tuple>(tuple); } else { return forward_as_tuple(std::forward<Tuple>(tuple)); } } } template <typename Derived> struct base_wrapper { base_wrapper operator++(int) { auto tmp = *this; ++*this; return tmp; } base_wrapper operator--(int) { static_assert(meta::is_bidirectional_or_better_category_v<typename Derived::iterator_category>, "Iterator must allow bidirectional access"); auto tmp = *this; --*this; return tmp; } auto operator[](ptrdiff_t n) const { static_assert(meta::is_random_access_iterator_category_v<typename Derived::iterator_category>, "Iterator must allow bidirectional access"); return *(*this + n); } friend base_wrapper operator+(ptrdiff_t n, const base_wrapper& a) { return a + n; } friend bool operator<(const base_wrapper& a, const base_wrapper& b) { static_assert(meta::is_random_access_iterator_category_v<typename Derived::iterator_category>, "Iterator must allow random access"); return b - a > 0; } friend bool operator>(const base_wrapper& a, const base_wrapper& b) { static_assert(meta::is_random_access_iterator_category_v<typename Derived::iterator_category>, "Iterator must allow random access"); return b < a; } friend bool operator>=(const base_wrapper& a, base_wrapper& b) { static_assert(meta::is_random_access_iterator_category_v<typename Derived::iterator_category>, "Iterator must allow random access"); return !(a < b); // NOLINT } friend bool operator<=(const base_wrapper& a, const base_wrapper& b) { static_assert(meta::is_random_access_iterator_category_v<typename Derived::iterator_category>, "Iterator must allow random access"); return !(a > b); // NOLINT } friend bool operator==(const base_wrapper& a, const base_wrapper& b) { return static_cast<const Derived&>(a).base() == static_cast<const Derived&>(b).base(); } friend bool operator!=(const base_wrapper& a, const base_wrapper& b) { return !(static_cast<const Derived&>(a).base() == static_cast<const Derived&>(b).base()); // NOLINT } }; template <typename Iter, typename Derived, bool dereference = false> struct passthrough_wrapper : base_wrapper<Derived> { explicit passthrough_wrapper(Iter iter): iter(std::move(iter)) { } auto base() const { return iter; } friend ptrdiff_t operator-(const passthrough_wrapper& a, const passthrough_wrapper& b) { return a.base() - b.base(); } protected: mutable Iter iter; }; template <typename Iter, typename Derived> struct passthrough_wrapper<Iter, Derived, true> : passthrough_wrapper<Iter, Derived> { using passthrough_wrapper<Iter, Derived>::passthrough_wrapper; meta::deref_return_t<Iter> operator*() const { return *this->iter; } }; template <typename Iter, typename Derived> class deref_only_wrapper : public passthrough_wrapper<Iter, Derived, false> { public: using passthrough_wrapper<Iter, Derived, false>::passthrough_wrapper; deref_only_wrapper& operator++() { ++this->iter; return *this; } deref_only_wrapper& operator--() { --this->iter; return *this; } deref_only_wrapper& operator+(blt::ptrdiff_t n) { static_assert(meta::is_random_access_iterator_v<Iter>, "Iterator must allow random access"); this->iter = this->iter + n; return *this; } deref_only_wrapper& operator-(blt::ptrdiff_t n) { static_assert(meta::is_random_access_iterator_v<Iter>, "Iterator must allow random access"); this->iter = this->iter - n; return *this; } }; template <typename Iter, typename Func> class map_wrapper : public deref_only_wrapper<Iter, map_wrapper<Iter, Func>> { public: using iterator_category = typename std::iterator_traits<Iter>::iterator_category; using value_type = std::invoke_result_t<Func, meta::deref_return_t<Iter>>; using difference_type = blt::ptrdiff_t; using pointer = value_type; using reference = value_type; map_wrapper(Iter iter, Func func): deref_only_wrapper<Iter, map_wrapper<Iter, Func>>(std::move(iter)), func(std::move(func)) { } reference operator*() const { return func(*this->iter); } private: Func func; }; template <typename Iter, typename Pred> class filter_wrapper : public deref_only_wrapper<Iter, filter_wrapper<Iter, Pred>> { public: using iterator_category = typename std::iterator_traits<Iter>::iterator_category; using value_type = std::conditional_t< std::is_reference_v<meta::deref_return_t<Iter>>, std::optional<std::reference_wrapper<std::remove_reference_t<meta::deref_return_t<Iter>>>>, std::optional<meta::deref_return_t<Iter>>>; using difference_type = blt::ptrdiff_t; using pointer = value_type; using reference = value_type; filter_wrapper(Iter iter, Pred func): deref_only_wrapper<Iter, filter_wrapper<Iter, Pred>>(std::move(iter)), func(std::move(func)) { } reference operator*() const { if (!func(*this->iter)) { return {}; } return *this->iter; } private: Pred func; }; template <typename Iter> class const_wrapper : public deref_only_wrapper<Iter, const_wrapper<Iter>> { public: using ref_return = meta::deref_return_t<Iter>; using iterator_category = typename std::iterator_traits<Iter>::iterator_category; using value_type = std::conditional_t<std::is_reference_v<ref_return>, std::remove_reference_t<ref_return>, ref_return>; using difference_type = ptrdiff_t; using pointer = const value_type*; using reference = const value_type&; explicit const_wrapper(Iter iter): deref_only_wrapper<Iter, const_wrapper>(std::move(iter)) { } template<typename T> static auto make_const(T&& value) -> decltype(auto) { using Decay = std::decay_t<T>; if constexpr (std::is_lvalue_reference_v<T>) { return const_cast<const Decay&>(value); } else { return static_cast<const Decay>(value); } } auto operator*() const { if constexpr (std::is_reference_v<ref_return>) { return const_cast<const value_type&>(*this->iter); } else if constexpr (meta::is_tuple_v<value_type> || meta::is_pair_v<value_type>) { return std::apply([](auto&&... args) { return std::tuple<decltype(make_const(std::forward<decltype(args)>(args)))...>{make_const(std::forward<decltype(args)>(args))...}; }, *this->iter); } else { return *this->iter; } } }; namespace impl { template <typename Derived> class skip_t { private: template <bool check> auto skip_base(blt::size_t n) { auto* d = static_cast<Derived*>(this); auto begin = d->begin(); auto end = d->end(); if constexpr (meta::is_random_access_iterator_category_v<typename Derived::iterator_category>) { // random access iterators can have math directly applied to them. if constexpr (check) { return Derived{begin + std::min(static_cast<blt::ptrdiff_t>(n), std::distance(begin, end)), end}; } else { return Derived{begin + n, end}; } } else { for (blt::size_t i = 0; i < n; i++) { if constexpr (check) { if (begin == end) break; } ++begin; } return Derived{std::move(begin), std::move(end)}; } } public: auto skip(blt::size_t n) { return skip_base<false>(n); } auto skip_or(blt::size_t n) { return skip_base<true>(n); } }; template <typename Derived> class take_t { private: template <bool check> auto take_base(blt::size_t n) { static_assert(!meta::is_input_iterator_category_v<typename Derived::iterator_category>, "Cannot .take() on an input iterator!"); auto* d = static_cast<Derived*>(this); auto begin = d->begin(); auto end = d->end(); // take variant for forward and bidirectional iterators if constexpr (meta::is_forward_iterator_category_v<typename Derived::iterator_category> || meta::is_bidirectional_iterator_category_v<typename Derived::iterator_category>) { // with these guys we have to loop forward to move the iterators. an unfortunate inefficiency auto new_end = begin; for (blt::size_t i = 0; i < n; i++) { if constexpr (check) { if (new_end == end) break; } ++new_end; } return Derived{std::move(begin), std::move(new_end)}; } else if constexpr (meta::is_random_access_iterator_category_v<typename Derived::iterator_category>) { // random access iterators can have math directly applied to them. if constexpr (check) { return Derived{begin, begin + std::min(static_cast<blt::ptrdiff_t>(n), std::distance(begin, end))}; } else { return Derived{begin, begin + n}; } } } public: auto take(blt::size_t n) { return take_base<false>(n); } auto take_or(blt::size_t n) { return take_base<true>(n); } }; } template <typename IterBase> class iterator_container : public impl::take_t<iterator_container<IterBase>>, public impl::skip_t<iterator_container<IterBase>> { public: using iterator_category = typename std::iterator_traits<IterBase>::iterator_category; using iterator = IterBase; iterator_container(IterBase begin, IterBase end): m_begin(std::move(begin)), m_end(std::move(end)) { } template <typename Iter> iterator_container(Iter&& begin, Iter&& end): m_begin(std::forward<Iter>(begin)), m_end(std::forward<Iter>(end)) { } auto rev() const { static_assert(meta::is_bidirectional_or_better_category_v<iterator_category>, ".rev() must be used with bidirectional (or better) iterators!"); return iterator_container<std::reverse_iterator<IterBase>>{ std::reverse_iterator<IterBase>{end()}, std::reverse_iterator<IterBase>{begin()} }; } template <typename... Iter> auto zip(iterator_pair<Iter>... iterator_pairs) const { return zip_iterator_container(iterator_pair<decltype(begin())>{begin(), end()}, iterator_pairs...); } template <typename... Container> auto zip(Container&... containers) const { return zip_iterator_container(iterator_pair<decltype(begin())>{begin(), end()}, iterator_pair{containers.begin(), containers.end()}...); } template <typename... Container> auto zip(const Container&... containers) const { return zip_iterator_container(iterator_pair<decltype(begin())>{begin(), end()}, iterator_pair{containers.begin(), containers.end()}...); } template <typename Iter> auto zip(Iter begin, Iter end) { return zip(iterator_pair<Iter>{begin, end}); } auto enumerate() const { return enumerate_iterator_container{begin(), end(), static_cast<blt::size_t>(std::distance(begin(), end()))}; } auto flatten() const { return iterator_container<flatten_wrapper<IterBase, false>>{ blt::iterator::flatten_wrapper<IterBase, false>{m_begin}, blt::iterator::flatten_wrapper<IterBase, false>{m_end} }; } auto flatten_all() const { return iterator_container<flatten_wrapper<IterBase, true>>{ blt::iterator::flatten_wrapper<IterBase, true>{m_begin}, blt::iterator::flatten_wrapper<IterBase, true>{m_end} }; } auto as_const() const { return iterator_container<const_wrapper<IterBase>>{ const_wrapper<IterBase>{m_begin}, const_wrapper<IterBase>{m_end} }; } template <typename Func> auto map(Func func) const { return iterator_container<blt::iterator::map_wrapper<IterBase, Func>>{ blt::iterator::map_wrapper<IterBase, Func>{m_begin, func}, blt::iterator::map_wrapper<IterBase, Func>{m_end, func} }; } template <typename Pred> auto filter(Pred pred) const { return iterator_container<blt::iterator::filter_wrapper<IterBase, Pred>>{ blt::iterator::filter_wrapper<IterBase, Pred>{m_begin, pred}, blt::iterator::filter_wrapper<IterBase, Pred>{m_end, pred} }; } auto begin() const { return m_begin; } auto end() const { return m_end; } protected: IterBase m_begin; IterBase m_end; }; } #endif //BLT_ITERATOR_ITER_COMMON