#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef BLT_ITERATOR_ZIP #define BLT_ITERATOR_ZIP #include #include #include #include namespace blt { namespace iterator { template class zip_wrapper; template class zip_wrapper { public: using iterator_category = std::input_iterator_tag; using value_type = std::tuple...>; using difference_type = blt::ptrdiff_t; using pointer = value_type; using reference = value_type; explicit zip_wrapper(Iter... iter): iter(std::make_tuple(iter...)) {} std::tuple...> operator*() const { return std::apply([](auto& ... i) { return std::tuple...>{*i...}; }, iter); } friend bool operator==(const zip_wrapper& a, const zip_wrapper& b) { return a.iter == b.iter; } friend bool operator!=(const zip_wrapper& a, const zip_wrapper& b) { return !(a.iter == b.iter); } zip_wrapper& operator++() { std::apply([](auto& ... i) { ((++i), ...); }, iter); return *this; } zip_wrapper operator++(int) { auto tmp = *this; ++*this; return tmp; } auto base() { return iter; } protected: std::tuple iter; }; template class zip_wrapper : public zip_wrapper { public: using iterator_category = std::forward_iterator_tag; using value_type = std::tuple...>; using difference_type = blt::ptrdiff_t; using pointer = value_type; using reference = value_type; using zip_wrapper::zip_wrapper; }; template class zip_wrapper : public zip_wrapper { public: using iterator_category = std::bidirectional_iterator_tag; using value_type = std::tuple...>; using difference_type = blt::ptrdiff_t; using pointer = value_type; using reference = value_type; public: using zip_wrapper::zip_wrapper; zip_wrapper& operator--() { std::apply([](auto& ... i) { ((--i), ...); }, this->iter); return *this; } zip_wrapper operator--(int) { auto tmp = *this; --*this; return tmp; } }; template class zip_wrapper : public zip_wrapper { public: using iterator_category = std::random_access_iterator_tag; using value_type = std::tuple...>; using difference_type = blt::ptrdiff_t; using pointer = value_type; using reference = value_type; private: template static blt::ptrdiff_t sub(const zip_wrapper& a, const zip_wrapper& b, std::integer_sequence) { blt::ptrdiff_t min = std::numeric_limits::max(); ((min = std::min(min, std::get(a.iter) - std::get(b.iter))), ...); return min; } public: using zip_wrapper::zip_wrapper; zip_wrapper& operator+=(blt::ptrdiff_t n) { std::apply([n](auto& ... i) { ((i += n), ...); }, this->iter); return *this; } zip_wrapper& operator-=(blt::ptrdiff_t n) { std::apply([n](auto& ... i) { ((i -= n), ...); }, this->iter); return *this; } friend zip_wrapper operator+(const zip_wrapper& a, blt::ptrdiff_t n) { return std::apply([n](auto& ... i) { return zip_wrapper{(i + n)...}; }, a.iter); } friend zip_wrapper operator+(blt::ptrdiff_t n, const zip_wrapper& a) { return std::apply([n](auto& ... i) { return zip_wrapper{(i + n)...}; }, a.iter); } friend zip_wrapper operator-(const zip_wrapper& a, blt::ptrdiff_t n) { return std::apply([n](auto& ... i) { return zip_wrapper{(i - n)...}; }, a.iter); } friend zip_wrapper operator-(blt::ptrdiff_t n, const zip_wrapper& a) { return std::apply([n](auto& ... i) { return zip_wrapper{(i - n)...}; }, a.iter); } friend blt::ptrdiff_t operator-(const zip_wrapper& a, const zip_wrapper& b) { return sub(a, b, std::index_sequence_for()); } auto operator[](blt::ptrdiff_t n) const { return *(*this + n); } friend bool operator<(const zip_wrapper& a, const zip_wrapper& b) { return b - a > 0; } friend bool operator>(const zip_wrapper& a, const zip_wrapper& b) { return b < a; } friend bool operator>=(const zip_wrapper& a, const zip_wrapper& b) { return !(a < b); // NOLINT } friend bool operator<=(const zip_wrapper& a, const zip_wrapper& b) { return !(a > b); // NOLINT } }; template auto get_base(Iter iter) { if constexpr (meta::is_reverse_iterator_v) { return std::move(iter).base(); } else { return std::move(iter); } } template class take_impl { private: template auto take_base(blt::size_t n) { static_assert(!std::is_same_v, "Cannot .take() on an input iterator!"); auto* d = static_cast(this); auto begin = d->begin(); auto end = d->end(); // take variant for forward and bidirectional iterators if constexpr (std::is_same_v || std::is_same_v) { // with these guys we have to loop forward to move the iterators. an unfortunate inefficiency auto new_end = begin; for (blt::size_t i = 0; i < n; i++) { if constexpr (check) { if (new_end == end) break; } ++new_end; } return Derived{get_base(std::move(begin)), get_base(std::move(new_end))}; } else if constexpr (std::is_same_v) { // random access iterators can have math directly applied to them. if constexpr (check) { return Derived{get_base(begin), get_base(begin + std::min(n, static_cast(std::distance(begin, end))))}; } else { return Derived{get_base(begin), get_base(begin + n)}; } } } public: auto take(blt::size_t n) { return take_base(n); } auto take_or(blt::size_t n) { return take_base(n); } }; } template struct iterator_pair { using type = Iter; iterator_pair(Iter begin, Iter end): begin(std::move(begin)), end(std::move(end)) {} Iter begin; Iter end; }; template class zip_iterator_storage; template class zip_iterator_storage_rev; template class zip_iterator_storage : public iterator::take_impl> { public: using iterator_category = meta::lowest_iterator_category_t; public: zip_iterator_storage(iterator_pair... iterator_pairs): m_begins(std::move(iterator_pairs.begin)...), m_ends(std::move(iterator_pairs.end)...) {} zip_iterator_storage(iterator::zip_wrapper begins, iterator::zip_wrapper ends): m_begins(std::move(begins)), m_ends(std::move(ends)) {} auto rev() { static_assert((std::is_same_v || std::is_same_v), ".rev() must be used with bidirectional (or better) iterators!"); return zip_iterator_storage_rev{m_ends, m_begins}; } auto skip(blt::size_t n) { if constexpr (std::is_same_v) { } } auto begin() const { return m_begins; } auto end() const { return m_ends; } private: iterator::zip_wrapper m_begins; iterator::zip_wrapper m_ends; }; template class zip_iterator_storage_rev : public iterator::take_impl> { public: using iterator_category = meta::lowest_iterator_category_t; public: zip_iterator_storage_rev(iterator_pair... iterator_pairs): m_begins(iterator_pairs.begin...), m_ends(iterator_pairs.end...) { static_assert((std::is_same_v || std::is_same_v), "reverse iteration is only supported on bidirectional or better iterators!"); } zip_iterator_storage_rev(iterator::zip_wrapper begins, iterator::zip_wrapper ends): m_begins(std::move(begins)), m_ends(std::move(ends)) { static_assert((std::is_same_v || std::is_same_v), "reverse iteration is only supported on bidirectional or better iterators!"); } auto rev() { return zip_iterator_storage{m_ends.base(), m_begins.base()}; } auto begin() const { return m_begins; } auto end() const { return m_ends; } private: std::reverse_iterator> m_begins; std::reverse_iterator> m_ends; }; /* * CTAD for the zip containers */ template zip_iterator_storage(iterator_pair...) -> zip_iterator_storage; template zip_iterator_storage(std::initializer_list...) -> zip_iterator_storage; template zip_iterator_storage_rev(iterator_pair...) -> zip_iterator_storage_rev; template zip_iterator_storage_rev(std::initializer_list...) -> zip_iterator_storage_rev; /* * Helper functions for creating zip containers */ template auto zip(Container& ... container) { return blt::zip_iterator_storage{iterator_pair{container.begin(), container.end()}...}; } } #endif //BLT_ITERATOR_ZIP