/* * Created by Brett on 28/02/23. * Licensed under GNU General Public License V3.0 * See LICENSE file for license detail */ #ifndef BLT_TESTS_MATRIX_H #define BLT_TESTS_MATRIX_H #include namespace blt { class mat4x4 { protected: // 4x4 = 16 union dataType { float single[16]; float dim[4][4]; }; dataType data{}; friend mat4x4 operator+(const mat4x4& left, const mat4x4& right); friend mat4x4 operator-(const mat4x4& left, const mat4x4& right); friend mat4x4 operator*(const mat4x4& left, const mat4x4& right); friend mat4x4 operator*(float c, const mat4x4& v); friend mat4x4 operator*(const mat4x4& v, float c); friend mat4x4 operator/(const mat4x4& v, float c); friend mat4x4 operator/(float c, const mat4x4& v); public: mat4x4() { for (float& i : data.single) i = 0; // set identity matrix default m00(1); m11(1); m22(1); m33(1); } mat4x4(const mat4x4& mat) { for (int i = 0; i < 16; i++) { data.single[i] = mat.data.single[i]; } } explicit mat4x4(const float dat[16]) { for (int i = 0; i < 16; i++) { data.single[i] = dat[i]; } } inline mat4x4& translate(float x, float y, float z) { /** * 9.005 Are OpenGL matrices column-major or row-major? * For programming purposes, OpenGL matrices are 16-value arrays with base vectors laid out contiguously in memory. * The translation components occupy the 13th, 14th, and 15th elements of the 16-element matrix, * where indices are numbered from 1 to 16 as described in section 2.11.2 of the OpenGL 2.1 Specification. */ m03(x); m13(y); m23(z); return *this; } inline mat4x4& translate(const vec4& vec) { return translate(vec[0], vec[1], vec[2]); } inline mat4x4& translate(const vec3& vec) { return translate(vec[0], vec[1], vec[2]); } inline mat4x4& scale(float x, float y, float z) { m00(m00() * x); m11(m11() * y); m22(m11() * z); return *this; } inline mat4x4& scale(const vec4& vec) { return scale(vec[0], vec[1], vec[2]); } inline mat4x4& scale(const vec3& vec) { return scale(vec[0], vec[1], vec[2]); } [[nodiscard]] mat4x4 transpose() const { mat4x4 copy{*this}; for (int i = 0; i < 4; i++){ for (int j = 0; j < 4; j++) { copy.m(j, i, m(i, j)); } } return copy; } [[nodiscard]] inline float m(int row, int column) const { return data.single[row + column * 4]; }; [[nodiscard]] inline float m00() const { return m(0, 0); } [[nodiscard]] inline float m10() const { return m(1, 0); } [[nodiscard]] inline float m20() const { return m(2, 0); } [[nodiscard]] inline float m30() const { return m(3, 0); } [[nodiscard]] inline float m01() const { return m(0, 1); } [[nodiscard]] inline float m11() const { return m(1, 1); } [[nodiscard]] inline float m21() const { return m(2, 1); } [[nodiscard]] inline float m31() const { return m(3, 1); } [[nodiscard]] inline float m02() const { return m(0, 2); } [[nodiscard]] inline float m12() const { return m(1, 2); } [[nodiscard]] inline float m22() const { return m(2, 2); } [[nodiscard]] inline float m32() const { return m(3, 2); } [[nodiscard]] inline float m03() const { return m(0, 3); } [[nodiscard]] inline float m13() const { return m(1, 3); } [[nodiscard]] inline float m23() const { return m(2, 3); } [[nodiscard]] inline float m33() const { return m(3, 3); } inline float m(int row, int column, float value) { return data.single[row + column * 4] = value; }; inline float m00(float d) { return m(0, 0, d); } inline float m10(float d) { return m(1, 0, d); } inline float m20(float d) { return m(2, 0, d); } inline float m30(float d) { return m(3, 0, d); } inline float m01(float d) { return m(0, 1, d); } inline float m11(float d) { return m(1, 1, d); } inline float m21(float d) { return m(2, 1, d); } inline float m31(float d) { return m(3, 1, d); } inline float m02(float d) { return m(0, 2, d); } inline float m12(float d) { return m(1, 2, d); } inline float m22(float d) { return m(2, 2, d); } inline float m32(float d) { return m(3, 2, d); } inline float m03(float d) { return m(0, 3, d); } inline float m13(float d) { return m(1, 3, d); } inline float m23(float d) { return m(2, 3, d); } inline float m33(float d) { return m(3, 3, d); } [[nodiscard]] float determinant() const { return m00() * (m11() * m22() * m33() + m12() * m23() * m31() + m13() * m21() * m32() - m31() * m22() * m13() - m32() * m23() * m11() - m33() * m21() * m12()) - m10() * (m01() * m22() * m33() + m02() * m23() * m31() + m03() * m21() * m32() - m31() * m32() * m03() - m32() * m23() * m01() - m33() * m21() * m02()) + m20() * (m01() * m12() * m33() + m02() * m13() * m31() + m03() * m11() * m32() - m31() * m12() * m03() - m32() * m13() * m01() - m33() * m11() * m02()) - m30() * (m01() * m12() * m23() + m02() * m13() * m21() + m03() * m11() * m22() - m21() * m12() * m03() - m22() * m13() * m01() - m23() * m11() * m02()); } inline float* ptr() { return data.single; } }; // adds the two mat4x4 left and right inline mat4x4 operator+(const mat4x4& left, const mat4x4& right) { float data[16]; for (int i = 0; i < 16; i++) data[i] = left.data.single[i] + right.data.single[i]; return mat4x4{data}; } // subtracts the right mat4x4 from the left. inline mat4x4 operator-(const mat4x4& left, const mat4x4& right) { float data[16]; for (int i = 0; i < 16; i++) data[i] = left.data.single[i] - right.data.single[i]; return mat4x4{data}; } // since matrices are made identity by default, we need to create the result collector matrix without identity // otherwise the diagonal will be 1 off and cause weird results (see black screen issue) constexpr float emptyMatrix[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // multiples the left with the right inline mat4x4 operator*(const mat4x4& left, const mat4x4& right) { mat4x4 mat{emptyMatrix}; // TODO: check avx with this?? for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { for (int k = 0; k < 4; k++) { mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j)); } } } return mat; } // multiplies the const c with each element in the mat4x4 v inline mat4x4 operator*(float c, const mat4x4& v) { mat4x4 mat{}; for (int i = 0; i < 16; i++) { mat.data.single[i] = c * v.data.single[i]; } return mat; } // same as above but for right sided constants inline mat4x4 operator*(const mat4x4& v, float c) { mat4x4 mat{}; for (int i = 0; i < 16; i++) { mat.data.single[i] = v.data.single[i] * c; } return mat; } // divides the mat4x4 by the constant c inline mat4x4 operator/(const mat4x4& v, float c) { mat4x4 mat{}; for (int i = 0; i < 16; i++) { mat.data.single[i] = v.data.single[i] / c; } return mat; } // divides each element in the mat4x4 by over the constant inline mat4x4 operator/(float c, const mat4x4& v) { mat4x4 mat{}; for (int i = 0; i < 16; i++) { mat.data.single[i] = c / v.data.single[i]; } return mat; } // https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html // https://ogldev.org/www/tutorial12/tutorial12.html static inline mat4x4 perspective(float fov, float aspect_ratio, float near, float far){ mat4x4 perspectiveMat4x4 {emptyMatrix}; float oneOverNearMFar = 1.0f / (near - far); float halfTan = tanf(fov * 0.5f * (float)M_PI / 180.0f); perspectiveMat4x4.m00(float(1.0 / (aspect_ratio * halfTan))); perspectiveMat4x4.m11(float(1.0 / halfTan)); perspectiveMat4x4.m22(float(-((far + near) / (far - near)))); perspectiveMat4x4.m32(-1); perspectiveMat4x4.m23(float(-((2 * near * far) / (far - near)))); return perspectiveMat4x4; } static inline mat4x4 ortho(float left, float right, float top, float bottom, float near, float far){ mat4x4 perspectiveMat4x4 {emptyMatrix}; perspectiveMat4x4.m00(2/(right - left)); perspectiveMat4x4.m11(2/(top-bottom)); perspectiveMat4x4.m22(2/(far-near)); perspectiveMat4x4.m33(1); perspectiveMat4x4.m03(-(right + left) / (right - left)); perspectiveMat4x4.m13(-(top + bottom) / (top - bottom)); perspectiveMat4x4.m23(-(far + near) / (far - near)); return perspectiveMat4x4; } } #endif //BLT_TESTS_MATRIX_H