/* * Created by Brett on 08/02/23. * Licensed under GNU General Public License V3.0 * See LICENSE file for license detail */ #ifndef BLT_TESTS_MEMORY_H #define BLT_TESTS_MEMORY_H #include #include #include #include "queue.h" #include #include #include #include #include #include #include #if defined(__clang__) || defined(__llvm__) || defined(__GNUC__) || defined(__GNUG__) #include #define SWAP16(val) bswap_16(val) #define SWAP32(val) bswap_32(val) #define SWAP64(val) bswap_64(val) #if __cplusplus >= 202002L #include #define ENDIAN_LOOKUP(little_endian) (std::endian::native == std::endian::little && !little_endian) || \ (std::endian::native == std::endian::big && little_endian) #else #define ENDIAN_LOOKUP(little_endian) !little_endian #endif #elif defined(_MSC_VER) #include #define SWAP16(val) _byteswap_ushort(val) #define SWAP32(val) _byteswap_ulong(val) #define SWAP64(val) _byteswap_uint64(val) #define ENDIAN_LOOKUP(little_endian) !little_endian #endif namespace blt { namespace mem { // Used to grab the byte-data of any T element. Defaults to Big Endian, however can be configured to use little endian template inline static int toBytes(const T& in, BYTE_TYPE* out) { if constexpr (!(std::is_same_v || std::is_same_v)) static_assert("Must provide a signed/unsigned int8 type"); std::memcpy(out, (void*) &in, sizeof(T)); if constexpr (ENDIAN_LOOKUP(little_endian)) { // TODO: this but better. for (size_t i = 0; i < sizeof(T) / 2; i++) std::swap(out[i], out[sizeof(T) - 1 - i]); } return 0; } // Used to cast the binary data of any T object, into a T object. Assumes data is in big ending (configurable) template inline static int fromBytes(const BYTE_TYPE* in, T& out) { if constexpr (!(std::is_same_v || std::is_same_v)) static_assert("Must provide a signed/unsigned int8 type"); std::array data; std::memcpy(data.data(), in, sizeof(T)); if constexpr (ENDIAN_LOOKUP(little_endian)) { // if we need to swap find the best way to do so if constexpr (std::is_same_v || std::is_same_v) out = SWAP16(*reinterpret_cast(data.data())); else if constexpr (std::is_same_v || std::is_same_v) out = SWAP32(*reinterpret_cast(data.data())); else if constexpr (std::is_same_v || std::is_same_v) out = SWAP64(*reinterpret_cast(data.data())); else { std::reverse(data.begin(), data.end()); out = *reinterpret_cast(data.data()); } } return 0; } template inline static int fromBytes(const BYTE_TYPE* in, T* out) { return fromBytes(in, *out); } } template struct range_itr { private: T current; public: using iterator_category = std::bidirectional_iterator_tag; using difference_type = T; using value_type = T; using pointer = T*; using reference = T&; explicit range_itr(T current): current(current) {} value_type operator*() const { return current; } value_type operator->() { return current; } range_itr& operator++() { current++; return *this; } range_itr& operator--() { current--; return *this; } range_itr operator++(int) { auto tmp = *this; ++(*this); return tmp; } range_itr operator--(int) { auto tmp = *this; --(*this); return tmp; } friend bool operator==(const range_itr& a, const range_itr& b) { return a.current == b.current; } friend bool operator!=(const range_itr& a, const range_itr& b) { return a.current != b.current; } }; template struct range { private: T _begin; T _end; public: range(T begin, T end): _begin(begin), _end(end) {} range_itr begin() { return range_itr{_begin}; } range_itr end() { return range_itr{_end}; } }; template struct ptr_iterator { public: using iterator_category = std::random_access_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = V; using pointer = value_type*; using reference = value_type&; explicit ptr_iterator(V* v): _v(v) {} reference operator*() const { return *_v; } pointer operator->() { return _v; } ptr_iterator& operator++() { _v++; return *this; } ptr_iterator& operator--() { _v--; return *this; } ptr_iterator operator++(int) { auto tmp = *this; ++(*this); return tmp; } ptr_iterator operator--(int) { auto tmp = *this; --(*this); return tmp; } friend bool operator==(const ptr_iterator& a, const ptr_iterator& b) { return a._v == b._v; } friend bool operator!=(const ptr_iterator& a, const ptr_iterator& b) { return a._v != b._v; } private: V* _v; }; /** * Creates an encapsulation of a T array which will be automatically deleted when this object goes out of scope. * This is a simple buffer meant to be used only inside of a function and not copied around. * The internal buffer is allocated on the heap. * The operator * has been overloaded to return the internal buffer. * @tparam T type that is stored in buffer eg char */ template || std::is_copy_assignable_v> class scoped_buffer { private: T* _buffer = nullptr; size_t _size; public: scoped_buffer(): _buffer(nullptr), _size(0) {} explicit scoped_buffer(size_t size): _size(size) { if (size > 0) _buffer = new T[size]; else _buffer = nullptr; } scoped_buffer(const scoped_buffer& copy) { if (copy.size() == 0) { _buffer = nullptr; _size = 0; return; } _buffer = new T[copy.size()]; _size = copy._size; if constexpr (std::is_trivially_copyable_v) { std::memcpy(_buffer, copy._buffer, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v && !std::is_copy_assignable_v) { for (size_t i = 0; i < this->_size; i++) _buffer[i] = T(copy[i]); } else for (size_t i = 0; i < this->_size; i++) _buffer[i] = copy[i]; } } scoped_buffer& operator=(const scoped_buffer& copy) { if (© == this) return *this; if (copy.size() == 0) { _buffer = nullptr; _size = 0; return *this; } delete[] this->_buffer; _buffer = new T[copy.size()]; _size = copy._size; if constexpr (std::is_trivially_copyable_v) { std::memcpy(_buffer, copy._buffer, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v && !std::is_copy_assignable_v) { for (size_t i = 0; i < this->_size; i++) _buffer[i] = T(copy[i]); } else for (size_t i = 0; i < this->_size; i++) _buffer[i] = copy[i]; } return *this; } scoped_buffer(scoped_buffer&& move) noexcept { delete[] _buffer; _buffer = move._buffer; _size = move.size(); move._buffer = nullptr; } scoped_buffer& operator=(scoped_buffer&& moveAssignment) noexcept { delete[] _buffer; _buffer = moveAssignment._buffer; _size = moveAssignment.size(); moveAssignment._buffer = nullptr; return *this; } inline T& operator[](unsigned long index) { return _buffer[index]; } inline const T& operator[](unsigned long index) const { return _buffer[index]; } inline T* operator*() { return _buffer; } [[nodiscard]] inline size_t size() const { return _size; } inline T*& ptr() { return _buffer; } inline const T* const& ptr() const { return _buffer; } inline const T* const& data() const { return _buffer; } inline T*& data() { return _buffer; } ptr_iterator begin() { return ptr_iterator{_buffer}; } ptr_iterator end() { return ptr_iterator{&_buffer[_size]}; } ~scoped_buffer() { delete[] _buffer; } }; template class scoped_buffer : scoped_buffer { using scoped_buffer::scoped_buffer; public: scoped_buffer(const scoped_buffer& copy) = delete; scoped_buffer operator=(scoped_buffer& copyAssignment) = delete; }; template struct nullptr_initializer { private: T* m_ptr = nullptr; public: nullptr_initializer() = default; explicit nullptr_initializer(T* ptr): m_ptr(ptr) {} nullptr_initializer(const nullptr_initializer& ptr): m_ptr(ptr.m_ptr) {} nullptr_initializer(nullptr_initializer&& ptr) noexcept: m_ptr(ptr.m_ptr) {} nullptr_initializer& operator=(const nullptr_initializer& ptr) { if (&ptr == this) return *this; this->m_ptr = ptr.m_ptr; return *this; } nullptr_initializer& operator=(nullptr_initializer&& ptr) noexcept { if (&ptr == this) return *this; this->m_ptr = ptr.m_ptr; return *this; } inline T* operator->() { return m_ptr; } ~nullptr_initializer() = default; }; /** * Creates a hash-map like association between an enum key and any arbitrary value. * The storage is backed by a contiguous array for faster access. * @tparam K enum value * @tparam V associated value */ template class enum_storage { private: V* m_values; size_t m_size = 0; public: enum_storage(std::initializer_list> init) { for (auto& i : init) m_size = std::max((size_t) i.first, m_size); m_values = new V[m_size]; for (auto& v : init) m_values[(size_t) v.first] = v.second; } inline V& operator[](size_t index) { return m_values[index]; } inline const V& operator[](size_t index) const { return m_values[index]; } [[nodiscard]] inline size_t size() const { return m_size; } ptr_iterator begin() { return ptr_iterator{m_values}; } ptr_iterator end() { return ptr_iterator{&m_values[m_size]}; } ~enum_storage() { delete[] m_values; } }; template class area_allocator { public: typedef T value_type; typedef T* pointer; typedef const T* const_pointer; typedef void* void_pointer; typedef const void* const_void_pointer; private: struct pointer_view { const_pointer p; size_t n; }; void expand() { size_t new_size = m_size * 2; T* data = new T[new_size]; if constexpr (std::is_trivially_copyable_v) std::memcpy(data, m_data, m_size); else if constexpr (std::is_move_assignable_v) { for (size_t i = 0; i < m_size; i++) data[i] = std::move(m_data[i]); } else if constexpr (std::is_move_constructible_v) { // is this bad? probably for (size_t i = 0; i < m_size; i++) data[i] = T(std::move(m_data)); } else if constexpr (std::is_copy_assignable_v) { for (size_t i = 0; i < m_size; i++) data[i] = m_data[i]; } else { static_assert("Unable to use this type with this allocator!"); } delete[] m_data; m_data = data; m_size = new_size; } void realign() { } public: area_allocator() { m_data = new T[m_size]; } [[nodiscard]] pointer* allocate(size_t n) { if (m_last + n > m_size) expand(); pointer loc = &m_data[m_last]; m_last += n; return loc; } void deallocate(pointer* p, size_t n) noexcept { deallocated_blocks.push({p, n}); m_deallocated += n; // TODO: magic number if (static_cast(m_deallocated) / static_cast(m_last) > 0.25) realign(); } ~area_allocator() { delete[] m_data; } private: // current size of the data size_t m_size = 1; // last allocated location size_t m_last = 0; // how many values have been deallocated size_t m_deallocated = 0; T* m_data = nullptr; blt::flat_queue deallocated_blocks; }; } #endif //BLT_TESTS_MEMORY_H