/* * Created by Brett on 08/02/23. * Licensed under GNU General Public License V3.0 * See LICENSE file for license detail */ #ifndef BLT_TESTS_MEMORY_H #define BLT_TESTS_MEMORY_H #include #include #include #include #include "queue.h" #include "utility.h" #include #include #include #include #include namespace blt { template struct ptr_iterator { public: using iterator_category = std::random_access_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = V; using pointer = value_type*; using reference = value_type&; explicit ptr_iterator(V* v): _v(v) {} reference operator*() const { return *_v; } pointer operator->() { return _v; } ptr_iterator& operator++() { _v++; return *this; } ptr_iterator& operator--() { _v--; return *this; } ptr_iterator operator++(int) { auto tmp = *this; ++(*this); return tmp; } ptr_iterator operator--(int) { auto tmp = *this; --(*this); return tmp; } friend bool operator==(const ptr_iterator& a, const ptr_iterator& b) { return a._v == b._v; } friend bool operator!=(const ptr_iterator& a, const ptr_iterator& b) { return a._v != b._v; } private: V* _v; }; /** * Creates an encapsulation of a T array which will be automatically deleted when this object goes out of scope. * This is a simple buffer meant to be used only inside of a function and not copied around. * The internal buffer is allocated on the heap. * The operator * has been overloaded to return the internal buffer. * @tparam T type that is stored in buffer eg char */ template || std::is_copy_assignable_v> class scoped_buffer { public: using element_type = T; using value_type = std::remove_cv_t; using pointer = T*; using const_pointer = const T*; using reference = T&; using const_reference = const T&; using iterator = ptr_iterator; using const_iterator = ptr_iterator; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; private: T* buffer_ = nullptr; size_t size_; public: constexpr scoped_buffer(): buffer_(nullptr), size_(0) {} constexpr explicit scoped_buffer(size_t size): size_(size) { if (size > 0) buffer_ = new T[size]; else buffer_ = nullptr; } constexpr scoped_buffer(const scoped_buffer& copy) { if (copy.size() == 0) { buffer_ = nullptr; size_ = 0; return; } buffer_ = new T[copy.size()]; size_ = copy.size_; if constexpr (std::is_trivially_copyable_v) { std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v && !std::is_copy_assignable_v) { for (size_t i = 0; i < this->size_; i++) buffer_[i] = T(copy[i]); } else for (size_t i = 0; i < this->size_; i++) buffer_[i] = copy[i]; } } constexpr scoped_buffer& operator=(const scoped_buffer& copy) { if (© == this) return *this; if (copy.size() == 0) { buffer_ = nullptr; size_ = 0; return *this; } delete[] this->buffer_; buffer_ = new T[copy.size()]; size_ = copy.size_; if constexpr (std::is_trivially_copyable_v) { std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v && !std::is_copy_assignable_v) { for (size_t i = 0; i < this->size_; i++) buffer_[i] = T(copy[i]); } else for (size_t i = 0; i < this->size_; i++) buffer_[i] = copy[i]; } return *this; } constexpr scoped_buffer(scoped_buffer&& move) noexcept { delete[] buffer_; buffer_ = move.buffer_; size_ = move.size(); move.buffer_ = nullptr; } constexpr scoped_buffer& operator=(scoped_buffer&& moveAssignment) noexcept { delete[] buffer_; buffer_ = moveAssignment.buffer_; size_ = moveAssignment.size(); moveAssignment.buffer_ = nullptr; return *this; } /** * Resize the internal buffer. Nothing will occur if the sizes are equal. * This function WILL NOT COPY ANY DATA. It is meant for use when creating a scoped buffer without size. */ constexpr void resize(size_t size) { if (size == 0) return; if (size == size_) return; delete[] buffer_; buffer_ = new T[size]; size_ = size; } constexpr inline T& operator[](size_t index) { return buffer_[index]; } constexpr inline const T& operator[](size_t index) const { return buffer_[index]; } constexpr inline T* operator*() { return buffer_; } [[nodiscard]] constexpr inline size_t size() const { return size_; } constexpr inline T*& ptr() { return buffer_; } constexpr inline const T* const& ptr() const { return buffer_; } constexpr inline const T* const& data() const { return buffer_; } constexpr inline T*& data() { return buffer_; } // inline auto begin() // { // return ptr_iterator{buffer_}; // } // // inline ptr_iterator end() // { // return ptr_iterator{&buffer_[size_]}; // } constexpr iterator begin() noexcept { return iterator{data()}; } constexpr iterator end() noexcept { return iterator{data() + size()}; } constexpr const_iterator cbegin() const noexcept { return const_iterator{data()}; } constexpr const_iterator cend() const noexcept { return const_iterator{data() + size()}; } constexpr reverse_iterator rbegin() noexcept { return reverse_iterator{end()}; } constexpr reverse_iterator rend() noexcept { return reverse_iterator{begin()}; } constexpr const_reverse_iterator crbegin() const noexcept { return reverse_iterator{cend()}; } constexpr const_reverse_iterator crend() const noexcept { return reverse_iterator{cbegin()}; } ~scoped_buffer() { delete[] buffer_; } }; template class static_vector { private: T buffer_[MAX_SIZE]; size_t size_ = 0; public: static_vector() = default; inline bool push_back(const T& copy) { if (size_ >= MAX_SIZE) return false; buffer_[size_++] = copy; return true; } inline bool push_back(T&& move) { if (size_ >= MAX_SIZE) return false; buffer_[size_++] = std::move(move); return true; } inline T& at(size_t index) { if (index >= MAX_SIZE) throw std::runtime_error("Array index " + std::to_string(index) + " out of bounds! (Max size: " + std::to_string(MAX_SIZE) + ')'); } inline T& operator[](size_t index) { return buffer_[index]; } inline const T& operator[](size_t index) const { return buffer_[index]; } inline void reserve(size_t size) { if (size > MAX_SIZE) size = MAX_SIZE; size_ = size; } [[nodiscard]] inline size_t size() const { return size_; } [[nodiscard]] inline size_t capacity() const { return MAX_SIZE; } inline T* data() { return buffer_; } inline T* operator*() { return buffer_; } inline T* data() const { return buffer_; } inline T* begin() { return buffer_; } inline T* end() { return &buffer_[size_]; } }; template class scoped_buffer : scoped_buffer { using scoped_buffer::scoped_buffer; public: scoped_buffer(const scoped_buffer& copy) = delete; scoped_buffer operator=(scoped_buffer& copyAssignment) = delete; }; template struct nullptr_initializer { private: T* m_ptr = nullptr; public: nullptr_initializer() = default; explicit nullptr_initializer(T* ptr): m_ptr(ptr) {} nullptr_initializer(const nullptr_initializer& ptr): m_ptr(ptr.m_ptr) {} nullptr_initializer(nullptr_initializer&& ptr) noexcept: m_ptr(ptr.m_ptr) {} nullptr_initializer& operator=(const nullptr_initializer& ptr) { if (&ptr == this) return *this; this->m_ptr = ptr.m_ptr; return *this; } nullptr_initializer& operator=(nullptr_initializer&& ptr) noexcept { if (&ptr == this) return *this; this->m_ptr = ptr.m_ptr; return *this; } inline T* operator->() { return m_ptr; } ~nullptr_initializer() = default; }; /** * Creates a hash-map like association between an enum key and any arbitrary value. * The storage is backed by a contiguous array for faster access. * @tparam K enum value * @tparam V associated value */ template class enum_storage { private: V* m_values; size_t m_size = 0; public: enum_storage(std::initializer_list> init) { for (auto& i : init) m_size = std::max((size_t) i.first, m_size); m_values = new V[m_size]; for (auto& v : init) m_values[(size_t) v.first] = v.second; } inline V& operator[](size_t index) { return m_values[index]; } inline const V& operator[](size_t index) const { return m_values[index]; } [[nodiscard]] inline size_t size() const { return m_size; } ptr_iterator begin() { return ptr_iterator{m_values}; } ptr_iterator end() { return ptr_iterator{&m_values[m_size]}; } ~enum_storage() { delete[] m_values; } }; } #endif //BLT_TESTS_MEMORY_H