/* * Created by Brett on 08/02/23. * Licensed under GNU General Public License V3.0 * See LICENSE file for license detail */ #ifndef BLT_TESTS_MEMORY_H #define BLT_TESTS_MEMORY_H #include <blt/std/memory_util.h> #include <initializer_list> #include <iterator> #include <cstring> #include "queue.h" #include "utility.h" #include <blt/std/assert.h> #include <cstdint> #include <type_traits> #include <utility> #include <cstring> namespace blt { template<typename T, bool = std::is_copy_constructible_v<T> || std::is_copy_assignable_v<T>> class scoped_buffer; /** * Creates an encapsulation of a T array which will be automatically deleted when this object goes out of scope. * This is a simple buffer meant to be used only inside of a function and not copied around. * The internal buffer is allocated on the heap. * The operator * has been overloaded to return the internal buffer. * @tparam T type that is stored in buffer eg char */ template<typename T> class scoped_buffer<T, true> { public: using element_type = T; using value_type = std::remove_cv_t<T>; using pointer = T*; using const_pointer = const T*; using reference = T&; using const_reference = const T&; using iterator = ptr_iterator<T>; using const_iterator = ptr_iterator<const T>; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; private: T* buffer_ = nullptr; size_t size_; public: constexpr scoped_buffer(): buffer_(nullptr), size_(0) {} constexpr explicit scoped_buffer(size_t size): size_(size) { if (size > 0) buffer_ = new T[size]; else buffer_ = nullptr; } constexpr scoped_buffer(const scoped_buffer& copy) { if (copy.size() == 0) { buffer_ = nullptr; size_ = 0; return; } buffer_ = new T[copy.size()]; size_ = copy.size_; if constexpr (std::is_trivially_copyable_v<T>) { std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v<T> && !std::is_copy_assignable_v<T>) { for (size_t i = 0; i < this->size_; i++) buffer_[i] = T(copy[i]); } else for (size_t i = 0; i < this->size_; i++) buffer_[i] = copy[i]; } } constexpr scoped_buffer& operator=(const scoped_buffer& copy) { if (© == this) return *this; if (copy.size() == 0) { buffer_ = nullptr; size_ = 0; return *this; } delete[] this->buffer_; buffer_ = new T[copy.size()]; size_ = copy.size_; if constexpr (std::is_trivially_copyable_v<T>) { std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v<T> && !std::is_copy_assignable_v<T>) { for (size_t i = 0; i < this->size_; i++) buffer_[i] = T(copy[i]); } else for (size_t i = 0; i < this->size_; i++) buffer_[i] = copy[i]; } return *this; } constexpr scoped_buffer(scoped_buffer&& move) noexcept { delete[] buffer_; buffer_ = move.buffer_; size_ = move.size(); move.buffer_ = nullptr; } constexpr scoped_buffer& operator=(scoped_buffer&& moveAssignment) noexcept { delete[] buffer_; buffer_ = moveAssignment.buffer_; size_ = moveAssignment.size(); moveAssignment.buffer_ = nullptr; return *this; } /** * Resize the internal buffer. Nothing will occur if the sizes are equal. * This function WILL NOT COPY ANY DATA. It is meant for use when creating a scoped buffer without size. */ constexpr void resize(size_t size) { if (size == 0) return; if (size == size_) return; delete[] buffer_; buffer_ = new T[size]; size_ = size; } constexpr inline T& operator[](size_t index) { return buffer_[index]; } constexpr inline const T& operator[](size_t index) const { return buffer_[index]; } constexpr inline T* operator*() { return buffer_; } [[nodiscard]] constexpr inline size_t size() const { return size_; } constexpr inline T*& ptr() { return buffer_; } constexpr inline const T* const& ptr() const { return buffer_; } constexpr inline const T* const& data() const { return buffer_; } constexpr inline T*& data() { return buffer_; } constexpr iterator begin() noexcept { return iterator{data()}; } constexpr iterator end() noexcept { return iterator{data() + size()}; } constexpr const_iterator cbegin() const noexcept { return const_iterator{data()}; } constexpr const_iterator cend() const noexcept { return const_iterator{data() + size()}; } constexpr inline reverse_iterator rbegin() noexcept { return reverse_iterator{end()}; } constexpr inline reverse_iterator rend() noexcept { return reverse_iterator{begin()}; } constexpr inline const_iterator crbegin() const noexcept { return const_reverse_iterator{cend()}; } constexpr inline reverse_iterator crend() const noexcept { return reverse_iterator{cbegin()}; } ~scoped_buffer() { delete[] buffer_; } }; template<typename T> class scoped_buffer<T, false> : scoped_buffer<T, true> { using scoped_buffer<T, true>::scoped_buffer; public: scoped_buffer(const scoped_buffer& copy) = delete; scoped_buffer operator=(scoped_buffer& copyAssignment) = delete; }; // TODO: might already have a version of this somewhere! template<typename T, bool = std::is_copy_constructible_v<T> || std::is_copy_assignable_v<T>> class expanding_buffer; template<typename T> class expanding_buffer<T, true> { public: using element_type = T; using value_type = std::remove_cv_t<T>; using pointer = T*; using const_pointer = const T*; using reference = T&; using const_reference = const T&; using iterator = ptr_iterator<T>; using const_iterator = ptr_iterator<const T>; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; private: T* buffer_ = nullptr; size_t size_ = 0; public: constexpr expanding_buffer(): buffer_(nullptr), size_(0) {} constexpr explicit expanding_buffer(size_t size): size_(size) { if (size > 0) buffer_ = new T[size]; else buffer_ = nullptr; } constexpr expanding_buffer(const expanding_buffer& copy) { if (copy.size() == 0) { buffer_ = nullptr; size_ = 0; return; } buffer_ = new T[copy.size()]; size_ = copy.size_; if constexpr (std::is_trivially_copyable_v<T>) { std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v<T> && !std::is_copy_assignable_v<T>) { for (size_t i = 0; i < this->size_; i++) buffer_[i] = T(copy[i]); } else for (size_t i = 0; i < this->size_; i++) buffer_[i] = copy[i]; } } constexpr expanding_buffer& operator=(const expanding_buffer& copy) { if (© == this) return *this; if (copy.size() == 0) { buffer_ = nullptr; size_ = 0; return *this; } delete_this(buffer_, size()); buffer_ = new T[copy.size()]; size_ = copy.size_; if constexpr (std::is_trivially_copyable_v<T>) { std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v<T> && !std::is_copy_assignable_v<T>) { for (size_t i = 0; i < this->size_; i++) buffer_[i] = T(copy[i]); } else for (size_t i = 0; i < this->size_; i++) buffer_[i] = copy[i]; } return *this; } constexpr expanding_buffer(expanding_buffer&& move) noexcept { delete_this(buffer_, size()); buffer_ = move.buffer_; size_ = move.size(); move.buffer_ = nullptr; } constexpr expanding_buffer& operator=(expanding_buffer&& moveAssignment) noexcept { delete_this(buffer_, size()); buffer_ = moveAssignment.buffer_; size_ = moveAssignment.size(); moveAssignment.buffer_ = nullptr; return *this; } /** * Resize the internal buffer. Nothing will occur if the sizes are equal. * This function WILL NOT COPY ANY DATA. It is meant for use when creating a scoped buffer without size. */ constexpr void resize(size_t size) { if (size == 0) return; if (size == size_) return; delete_this(buffer_, this->size()); buffer_ = new T[size]; size_ = size; } constexpr inline T& operator[](size_t index) { if (index >= size()) allocate_for(index); return buffer_[index]; } constexpr inline const T& operator[](size_t index) const { if (index >= size()) BLT_ABORT("Index out of bounds"); return buffer_[index]; } constexpr inline T* operator*() { return buffer_; } [[nodiscard]] constexpr inline size_t size() const { return size_; } constexpr inline T*& ptr() { return buffer_; } constexpr inline const T* const& ptr() const { return buffer_; } constexpr inline const T* const& data() const { return buffer_; } constexpr inline T*& data() { return buffer_; } constexpr iterator begin() noexcept { return iterator{data()}; } constexpr iterator end() noexcept { return iterator{data() + size()}; } constexpr const_iterator cbegin() const noexcept { return const_iterator{data()}; } constexpr const_iterator cend() const noexcept { return const_iterator{data() + size()}; } constexpr inline reverse_iterator rbegin() noexcept { return reverse_iterator{end()}; } constexpr inline reverse_iterator rend() noexcept { return reverse_iterator{begin()}; } constexpr inline const_iterator crbegin() const noexcept { return const_reverse_iterator{cend()}; } constexpr inline reverse_iterator crend() const noexcept { return reverse_iterator{cbegin()}; } ~expanding_buffer() { delete_this(buffer_, size()); } void expand(blt::size_t new_size) { T* new_buffer = new T[new_size]; if (buffer_ != nullptr) { if constexpr (std::is_trivially_copyable_v<T>) { std::memcpy(new_buffer, buffer_, size_ * sizeof(T)); } else { if constexpr (std::is_copy_constructible_v<T> && !std::is_move_constructible_v<T>) { for (size_t i = 0; i < size_; i++) new_buffer[i] = T(buffer_[i]); } else for (size_t i = 0; i < size_; i++) new_buffer[i] = std::move(buffer_[i]); } delete[] buffer_; } buffer_ = new_buffer; size_ = new_size; } private: void allocate_for(blt::size_t accessing_index) { accessing_index = std::max(size_, accessing_index); accessing_index = blt::mem::next_byte_allocation(accessing_index); expand(accessing_index); } inline void delete_this(T* buffer, blt::size_t) { // if constexpr (std::is_trivially_destructible_v<T>) // return; // if (buffer == nullptr) // return; // for (blt::size_t i = 0; i < size; i++) // buffer[i]->~T(); // free(buffer); delete[] buffer; } }; template<typename T> class expanding_buffer<T, false> : expanding_buffer<T, true> { using expanding_buffer<T, true>::expanding_buffer; public: expanding_buffer(const expanding_buffer& copy) = delete; expanding_buffer operator=(expanding_buffer& copyAssignment) = delete; }; template<typename T> struct nullptr_initializer { private: T* m_ptr = nullptr; public: nullptr_initializer() = default; explicit nullptr_initializer(T* ptr): m_ptr(ptr) {} nullptr_initializer(const nullptr_initializer<T>& ptr): m_ptr(ptr.m_ptr) {} nullptr_initializer(nullptr_initializer<T>&& ptr) noexcept: m_ptr(ptr.m_ptr) {} nullptr_initializer<T>& operator=(const nullptr_initializer<T>& ptr) { if (&ptr == this) return *this; this->m_ptr = ptr.m_ptr; return *this; } nullptr_initializer<T>& operator=(nullptr_initializer<T>&& ptr) noexcept { if (&ptr == this) return *this; this->m_ptr = ptr.m_ptr; return *this; } inline T* operator->() { return m_ptr; } ~nullptr_initializer() = default; }; /** * Creates a hash-map like association between an enum key and any arbitrary value. * The storage is backed by a contiguous array for faster access. * @tparam K enum value * @tparam V associated value */ template<typename K, typename V> class enum_storage { private: V* m_values; size_t m_size = 0; public: enum_storage(std::initializer_list<std::pair<K, V>> init) { for (auto& i : init) m_size = std::max((size_t) i.first, m_size); m_values = new V[m_size]; for (auto& v : init) m_values[(size_t) v.first] = v.second; } inline V& operator[](size_t index) { return m_values[index]; } inline const V& operator[](size_t index) const { return m_values[index]; } [[nodiscard]] inline size_t size() const { return m_size; } ptr_iterator<V> begin() { return ptr_iterator{m_values}; } ptr_iterator<V> end() { return ptr_iterator{&m_values[m_size]}; } ~enum_storage() { delete[] m_values; } }; } #endif //BLT_TESTS_MEMORY_H