BLT/include/blt/math/matrix.h

627 lines
22 KiB
C++

/*
* Created by Brett on 28/02/23.
* Licensed under GNU General Public License V3.0
* See LICENSE file for license detail
*/
#ifndef BLT_TESTS_MATRIX_H
#define BLT_TESTS_MATRIX_H
#include <blt/math/vectors.h>
#include <cstring>
#ifndef M_PI
// MSVC does not have M_PI
# define M_PI 3.14159265358979323846
#endif
namespace blt
{
class mat4x4
{
protected:
// 4x4 = 16
union dataType
{
float single[16];
float dim[4][4];
};
dataType data{};
friend mat4x4 operator+(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator-(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator*(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator*(float c, const mat4x4& v);
friend mat4x4 operator*(const mat4x4& v, float c);
friend mat4x4 operator/(const mat4x4& v, float c);
friend mat4x4 operator/(float c, const mat4x4& v);
public:
mat4x4()
{
for (float& i : data.single)
i = 0;
// set identity matrix default
m00(1);
m11(1);
m22(1);
m33(1);
}
mat4x4(const blt::vec4& c1, const blt::vec4& c2, const blt::vec4& c3, const blt::vec4& c4)
{
// dangerous?
std::memcpy(data.dim[0], c1.data(), 4 * sizeof(float));
std::memcpy(data.dim[1], c2.data(), 4 * sizeof(float));
std::memcpy(data.dim[2], c3.data(), 4 * sizeof(float));
std::memcpy(data.dim[3], c4.data(), 4 * sizeof(float));
}
mat4x4(const mat4x4& mat)
{
for (int i = 0; i < 16; i++)
{
data.single[i] = mat.data.single[i];
}
}
mat4x4& operator=(const mat4x4& copy)
{
if (&copy == this)
return *this;
for (int i = 0; i < 16; i++)
{
data.single[i] = copy.data.single[i];
}
return *this;
}
explicit mat4x4(const float dat[16])
{
for (int i = 0; i < 16; i++)
{
data.single[i] = dat[i];
}
}
inline mat4x4& translate(float x, float y, float z)
{
mat4x4 translation_mat{};
/**
* 9.005 Are OpenGL matrices column-major or row-major?
* For programming purposes, OpenGL matrices are 16-value arrays with base vectors laid out contiguously in memory.
* The translation components occupy the 13th, 14th, and 15th elements of the 16-element matrix,
* where indices are numbered from 1 to 16 as described in section 2.11.2 of the OpenGL 2.1 Specification.
*/
translation_mat.m03(x);
translation_mat.m13(y);
translation_mat.m23(z);
*this = *this * translation_mat;
return *this;
}
inline mat4x4& translate(const vec4& vec)
{ return translate(vec[0], vec[1], vec[2]); }
inline mat4x4& translate(const vec3& vec)
{ return translate(vec[0], vec[1], vec[2]); }
inline mat4x4& scale(float x, float y, float z)
{
mat4x4 scale_mat{};
m00(m00() * x);
m11(m11() * y);
m22(m22() * z);
*this = *this * scale_mat;
return *this;
}
inline mat4x4& scale(const vec4& vec)
{ return scale(vec[0], vec[1], vec[2]); }
inline mat4x4& scale(const vec3& vec)
{ return scale(vec[0], vec[1], vec[2]); }
// angle in radians
inline mat4x4& rotateX(float angle)
{
mat4x4 rotationMatrix{};
rotationMatrix.m(1, 1, std::cos(angle));
rotationMatrix.m(1, 2, -std::sin(angle));
rotationMatrix.m(2, 1, std::sin(angle));
rotationMatrix.m(2, 2, std::cos(angle));
*this = *this * rotationMatrix;
return *this;
}
inline mat4x4& rotateY(float angle)
{
mat4x4 rotationMatrix{};
rotationMatrix.m(0, 0, std::cos(angle));
rotationMatrix.m(0, 2, std::sin(angle));
rotationMatrix.m(2, 0, -std::sin(angle));
rotationMatrix.m(2, 2, std::cos(angle));
*this = *this * rotationMatrix;
return *this;
}
inline mat4x4& rotateZ(float angle)
{
mat4x4 rotationMatrix{};
rotationMatrix.m(0, 0, std::cos(angle));
rotationMatrix.m(0, 1, -std::sin(angle));
rotationMatrix.m(1, 0, std::sin(angle));
rotationMatrix.m(1, 1, std::cos(angle));
*this = *this * rotationMatrix;
return *this;
}
[[nodiscard]] mat4x4 transpose() const
{
mat4x4 copy{*this};
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
copy.m(j, i, m(i, j));
}
}
return copy;
}
[[nodiscard]] float determinant() const
{
return m00() * (m11() * m22() * m33() + m12() * m23() * m31() + m13() * m21() * m32()
- m31() * m22() * m13() - m32() * m23() * m11() - m33() * m21() * m12())
- m10() * (m01() * m22() * m33() + m02() * m23() * m31() + m03() * m21() * m32()
- m31() * m32() * m03() - m32() * m23() * m01() - m33() * m21() * m02())
+ m20() * (m01() * m12() * m33() + m02() * m13() * m31() + m03() * m11() * m32()
- m31() * m12() * m03() - m32() * m13() * m01() - m33() * m11() * m02())
- m30() * (m01() * m12() * m23() + m02() * m13() * m21() + m03() * m11() * m22()
- m21() * m12() * m03() - m22() * m13() * m01() - m23() * m11() * m02());
}
[[nodiscard]] mat4x4 adjugate() const
{
mat4x4 ad;
ad.w11(w22() * w33() * w44() + w23() * w34() * w42() + w24() * w32() * w43()
- w24() * w33() * w42() - w23() * w32() * w44() - w22() * w34() * w43());
ad.w12(w21() * w33() * w44() + w23() * w34() * w41() + w24() * w31() * w43()
- w24() * w33() * w41() - w23() * w31() * w44() - w21() * w34() * w43());
ad.w13(w21() * w32() * w44() + w22() * w34() * w41() + w24() * w31() * w42()
- w24() * w32() * w41() - w22() * w31() * w44() - w21() * w34() * w42());
ad.w14(w21() * w32() * w43() + w22() * w33() * w41() + w23() * w31() * w42()
- w23() * w32() * w41() - w22() * w31() * w43() - w21() * w33() * w42());
ad.w21(w12() * w33() * w44() + w13() * w34() * w42() + w14() * w32() * w43()
- w14() * w33() * w42() - w13() * w32() * w44() - w12() * w34() * w43());
ad.w22(w11() * w33() * w44() + w13() * w34() * w41() + w14() * w31() * w43()
- w14() * w33() * w41() - w13() * w31() * w44() - w11() * w34() * w43());
ad.w23(w11() * w32() * w44() + w12() * w34() * w41() + w14() * w31() * w42()
- w14() * w32() * w41() - w12() * w31() * w44() - w11() * w34() * w42());
ad.w24(w11() * w32() * w43() + w12() * w33() * w41() + w13() * w31() * w42()
- w13() * w32() * w41() - w12() * w31() * w43() - w11() * w33() * w42());
ad.w31(w12() * w23() * w44() + w13() * w24() * w42() + w14() * w22() * w43()
- w14() * w23() * w42() - w13() * w22() * w44() - w12() * w24() * w43());
ad.w32(w11() * w23() * w44() + w13() * w24() * w41() + w14() * w21() * w43()
- w14() * w23() * w41() - w13() * w21() * w44() - w11() * w24() * w43());
ad.w33(w11() * w22() * w44() + w12() * w24() * w41() + w14() * w21() * w42()
- w14() * w22() * w41() - w12() * w21() * w44() - w11() * w24() * w42());
ad.w34(w11() * w22() * w43() + w12() * w23() * w41() + w13() * w21() * w42()
- w13() * w22() * w41() - w12() * w21() * w43() - w11() * w23() * w42());
ad.w41(w12() * w23() * w34() + w13() * w24() * w32() + w14() * w22() * w33()
- w14() * w23() * w32() - w13() * w22() * w34() - w12() * w24() * w33());
ad.w42(w11() * w23() * w34() + w13() * w24() * w31() + w14() * w21() * w33()
- w14() * w23() * w31() - w13() * w21() * w34() - w11() * w24() * w33());
ad.w43(w11() * w22() * w34() + w12() * w24() * w31() + w14() * w21() * w32()
- w14() * w22() * w31() - w12() * w21() * w34() - w11() * w24() * w32());
ad.w44(w11() * w22() * w33() + w12() * w23() * w31() + w13() * w21() * w32()
- w13() * w22() * w31() - w12() * w21() * w33() - w11() * w23() * w32());
for (int i = 1; i <= 4; i++)
{
for (int j = 1; j <= 4; j++)
{
auto v = static_cast<float>(std::pow(-1, j + i));
ad.w(j, i, v * ad.w(j, i));
}
}
return ad;
}
[[nodiscard]] mat4x4 inverse() const
{
auto ad = adjugate();
auto d = 1 / determinant();
return d * ad;
}
[[nodiscard]] inline float m(int row, int column) const
{ return data.single[row + column * 4]; };
[[nodiscard]] inline float m00() const
{ return m(0, 0); }
[[nodiscard]] inline float m10() const
{ return m(1, 0); }
[[nodiscard]] inline float m20() const
{ return m(2, 0); }
[[nodiscard]] inline float m30() const
{ return m(3, 0); }
[[nodiscard]] inline float m01() const
{ return m(0, 1); }
[[nodiscard]] inline float m11() const
{ return m(1, 1); }
[[nodiscard]] inline float m21() const
{ return m(2, 1); }
[[nodiscard]] inline float m31() const
{ return m(3, 1); }
[[nodiscard]] inline float m02() const
{ return m(0, 2); }
[[nodiscard]] inline float m12() const
{ return m(1, 2); }
[[nodiscard]] inline float m22() const
{ return m(2, 2); }
[[nodiscard]] inline float m32() const
{ return m(3, 2); }
[[nodiscard]] inline float m03() const
{ return m(0, 3); }
[[nodiscard]] inline float m13() const
{ return m(1, 3); }
[[nodiscard]] inline float m23() const
{ return m(2, 3); }
[[nodiscard]] inline float m33() const
{ return m(3, 3); }
inline float m(int row, int column, float value)
{ return data.single[row + column * 4] = value; };
inline float m00(float d)
{ return m(0, 0, d); }
inline float m10(float d)
{ return m(1, 0, d); }
inline float m20(float d)
{ return m(2, 0, d); }
inline float m30(float d)
{ return m(3, 0, d); }
inline float m01(float d)
{ return m(0, 1, d); }
inline float m11(float d)
{ return m(1, 1, d); }
inline float m21(float d)
{ return m(2, 1, d); }
inline float m31(float d)
{ return m(3, 1, d); }
inline float m02(float d)
{ return m(0, 2, d); }
inline float m12(float d)
{ return m(1, 2, d); }
inline float m22(float d)
{ return m(2, 2, d); }
inline float m32(float d)
{ return m(3, 2, d); }
inline float m03(float d)
{ return m(0, 3, d); }
inline float m13(float d)
{ return m(1, 3, d); }
inline float m23(float d)
{ return m(2, 3, d); }
inline float m33(float d)
{ return m(3, 3, d); }
[[nodiscard]] inline float w(int row, int column) const
{ return data.single[(row - 1) + (column - 1) * 4]; };
[[nodiscard]] inline float w11() const
{ return m(0, 0); }
[[nodiscard]] inline float w21() const
{ return m(1, 0); }
[[nodiscard]] inline float w31() const
{ return m(2, 0); }
[[nodiscard]] inline float w41() const
{ return m(3, 0); }
[[nodiscard]] inline float w12() const
{ return m(0, 1); }
[[nodiscard]] inline float w22() const
{ return m(1, 1); }
[[nodiscard]] inline float w32() const
{ return m(2, 1); }
[[nodiscard]] inline float w42() const
{ return m(3, 1); }
[[nodiscard]] inline float w13() const
{ return m(0, 2); }
[[nodiscard]] inline float w23() const
{ return m(1, 2); }
[[nodiscard]] inline float w33() const
{ return m(2, 2); }
[[nodiscard]] inline float w43() const
{ return m(3, 2); }
[[nodiscard]] inline float w14() const
{ return m(0, 3); }
[[nodiscard]] inline float w24() const
{ return m(1, 3); }
[[nodiscard]] inline float w34() const
{ return m(2, 3); }
[[nodiscard]] inline float w44() const
{ return m(3, 3); }
inline float w(int row, int column, float value)
{ return data.single[(row - 1) + (column - 1) * 4] = value; };
inline float w11(float d)
{ return m(0, 0, d); }
inline float w21(float d)
{ return m(1, 0, d); }
inline float w31(float d)
{ return m(2, 0, d); }
inline float w41(float d)
{ return m(3, 0, d); }
inline float w12(float d)
{ return m(0, 1, d); }
inline float w22(float d)
{ return m(1, 1, d); }
inline float w32(float d)
{ return m(2, 1, d); }
inline float w42(float d)
{ return m(3, 1, d); }
inline float w13(float d)
{ return m(0, 2, d); }
inline float w23(float d)
{ return m(1, 2, d); }
inline float w33(float d)
{ return m(2, 2, d); }
inline float w43(float d)
{ return m(3, 2, d); }
inline float w14(float d)
{ return m(0, 3, d); }
inline float w24(float d)
{ return m(1, 3, d); }
inline float w34(float d)
{ return m(2, 3, d); }
inline float w44(float d)
{ return m(3, 3, d); }
inline float* ptr()
{ return data.single; }
};
// adds the two mat4x4 left and right
inline mat4x4 operator+(const mat4x4& left, const mat4x4& right)
{
float data[16];
for (int i = 0; i < 16; i++)
data[i] = left.data.single[i] + right.data.single[i];
return mat4x4{data};
}
// subtracts the right mat4x4 from the left.
inline mat4x4 operator-(const mat4x4& left, const mat4x4& right)
{
float data[16];
for (int i = 0; i < 16; i++)
data[i] = left.data.single[i] - right.data.single[i];
return mat4x4{data};
}
// since matrices are made identity by default, we need to create the result collector matrix without identity
// otherwise the diagonal will be 1 off and cause weird results (see black screen issue)
constexpr float emptyMatrix[16] = {0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
// multiples the left with the right
inline mat4x4 operator*(const mat4x4& left, const mat4x4& right)
{
mat4x4 mat{emptyMatrix};
// TODO: check avx with this??
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
for (int k = 0; k < 4; k++)
{
mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j));
}
}
}
return mat;
}
inline vec4 operator*(const mat4x4& left, const vec4& right)
{
vec4 ret{0, 0, 0, 0};
for (int m = 0; m < 4; m++)
{
for (int n = 0; n < 4; n++)
{
ret[m] = ret[m] + left.m(m, n) * right[n];
}
}
return ret;
}
template<typename T, unsigned long size>
inline vec4 operator*(const mat4x4& left, const vec<T, size>& right)
{
vec4 ret{0, 0, 0, 0};
for (int i = 0; i < size; i++)
ret[i] = (float) right[i];
return left * ret;
}
// multiplies the const c with each element in the mat4x4 v
inline mat4x4 operator*(float c, const mat4x4& v)
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
{
mat.data.single[i] = c * v.data.single[i];
}
return mat;
}
// same as above but for right sided constants
inline mat4x4 operator*(const mat4x4& v, float c)
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
{
mat.data.single[i] = v.data.single[i] * c;
}
return mat;
}
// divides the mat4x4 by the constant c
inline mat4x4 operator/(const mat4x4& v, float c)
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
{
mat.data.single[i] = v.data.single[i] / c;
}
return mat;
}
// divides each element in the mat4x4 by over the constant
inline mat4x4 operator/(float c, const mat4x4& v)
{
mat4x4 mat{};
for (int i = 0; i < 16; i++)
{
mat.data.single[i] = c / v.data.single[i];
}
return mat;
}
// https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
// https://ogldev.org/www/tutorial12/tutorial12.html
// http://www.songho.ca/opengl/gl_projectionmatrix.html
static inline mat4x4 perspective(float fov, float aspect_ratio, float near, float far)
{
mat4x4 perspectiveMat4x4{emptyMatrix};
float halfTan = tanf(fov * 0.5f * (float) M_PI / 180.0f);
perspectiveMat4x4.m00(float(1.0 / (aspect_ratio * halfTan)));
perspectiveMat4x4.m11(float(1.0 / halfTan));
perspectiveMat4x4.m22(float(-((far + near) / (far - near))));
perspectiveMat4x4.m32(-1);
perspectiveMat4x4.m23(float(-((2 * near * far) / (far - near))));
return perspectiveMat4x4;
}
static inline mat4x4 ortho(float left, float right, float top, float bottom, float near, float far)
{
mat4x4 perspectiveMat4x4{emptyMatrix};
perspectiveMat4x4.m00(2 / (right - left));
perspectiveMat4x4.m11(2 / (top - bottom));
perspectiveMat4x4.m22(2 / (far - near));
perspectiveMat4x4.m33(1);
perspectiveMat4x4.m03(-(right + left) / (right - left));
perspectiveMat4x4.m13(-(top + bottom) / (top - bottom));
perspectiveMat4x4.m23(-(far + near) / (far - near));
return perspectiveMat4x4;
}
}
#endif //BLT_TESTS_MATRIX_H