BLT/include/blt/std/memory.h

447 lines
13 KiB
C++
Executable File

/*
* Created by Brett on 08/02/23.
* Licensed under GNU General Public License V3.0
* See LICENSE file for license detail
*/
#ifndef BLT_TESTS_MEMORY_H
#define BLT_TESTS_MEMORY_H
#include <initializer_list>
#include <iterator>
#include <cstring>
#include "queue.h"
#include <cstdint>
#include <type_traits>
#include <algorithm>
#include <utility>
#include <cstring>
#include <array>
#if defined(__clang__) || defined(__llvm__) || defined(__GNUC__) || defined(__GNUG__)
#include <byteswap.h>
#define SWAP16(val) bswap_16(val)
#define SWAP32(val) bswap_32(val)
#define SWAP64(val) bswap_64(val)
#if __cplusplus >= 202002L
#include <bit>
#define ENDIAN_LOOKUP(little_endian) (std::endian::native == std::endian::little && !little_endian) || \
(std::endian::native == std::endian::big && little_endian)
#else
#define ENDIAN_LOOKUP(little_endian) !little_endian
#endif
#elif defined(_MSC_VER)
#include <intrin.h>
#define SWAP16(val) _byteswap_ushort(val)
#define SWAP32(val) _byteswap_ulong(val)
#define SWAP64(val) _byteswap_uint64(val)
#define ENDIAN_LOOKUP(little_endian) !little_endian
#endif
namespace blt
{
namespace mem
{
// Used to grab the byte-data of any T element. Defaults to Big Endian, however can be configured to use little endian
template<bool little_endian = false, typename BYTE_TYPE, typename T>
inline static int toBytes(const T& in, BYTE_TYPE* out)
{
if constexpr (!(std::is_same_v<BYTE_TYPE, std::int8_t> || std::is_same_v<BYTE_TYPE, std::uint8_t>))
static_assert("Must provide a signed/unsigned int8 type");
std::memcpy(out, (void*) &in, sizeof(T));
if constexpr (ENDIAN_LOOKUP(little_endian))
{
// TODO: this but better.
for (size_t i = 0; i < sizeof(T) / 2; i++)
std::swap(out[i], out[sizeof(T) - 1 - i]);
}
return 0;
}
// Used to cast the binary data of any T object, into a T object. Assumes data is in big ending (configurable)
template<bool little_endian = false, typename BYTE_TYPE, typename T>
inline static int fromBytes(const BYTE_TYPE* in, T& out)
{
if constexpr (!(std::is_same_v<BYTE_TYPE, std::int8_t> || std::is_same_v<BYTE_TYPE, std::uint8_t>))
static_assert("Must provide a signed/unsigned int8 type");
std::array<BYTE_TYPE, sizeof(T)> data;
std::memcpy(data.data(), in, sizeof(T));
if constexpr (ENDIAN_LOOKUP(little_endian))
{
// if we need to swap find the best way to do so
if constexpr (std::is_same_v<T, int16_t> || std::is_same_v<T, uint16_t>)
out = SWAP16(*reinterpret_cast<T*>(data.data()));
else if constexpr (std::is_same_v<T, int32_t> || std::is_same_v<T, uint32_t>)
out = SWAP32(*reinterpret_cast<T*>(data.data()));
else if constexpr (std::is_same_v<T, int64_t> || std::is_same_v<T, uint64_t>)
out = SWAP64(*reinterpret_cast<T*>(data.data()));
else
{
std::reverse(data.begin(), data.end());
out = *reinterpret_cast<T*>(data.data());
}
}
return 0;
}
template<bool little_endian = false, typename BYTE_TYPE, typename T>
inline static int fromBytes(const BYTE_TYPE* in, T* out)
{
return fromBytes(in, *out);
}
}
template<typename V>
struct ptr_iterator
{
public:
using iterator_category = std::random_access_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = V;
using pointer = value_type*;
using reference = value_type&;
explicit ptr_iterator(V* v): _v(v)
{}
reference operator*() const
{ return *_v; }
pointer operator->()
{ return _v; }
ptr_iterator& operator++()
{
_v++;
return *this;
}
ptr_iterator& operator--()
{
_v--;
return *this;
}
ptr_iterator operator++(int)
{
auto tmp = *this;
++(*this);
return tmp;
}
ptr_iterator operator--(int)
{
auto tmp = *this;
--(*this);
return tmp;
}
friend bool operator==(const ptr_iterator& a, const ptr_iterator& b)
{
return a._v == b._v;
}
friend bool operator!=(const ptr_iterator& a, const ptr_iterator& b)
{
return a._v != b._v;
}
private:
V* _v;
};
/**
* Creates an encapsulation of a T array which will be automatically deleted when this object goes out of scope.
* This is a simple buffer meant to be used only inside of a function and not copied around.
* The internal buffer is allocated on the heap.
* The operator * has been overloaded to return the internal buffer.
* @tparam T type that is stored in buffer eg char
*/
template<typename T>
struct scoped_buffer
{
private:
T* _buffer;
size_t _size;
public:
scoped_buffer(): _size(0), _buffer(nullptr)
{}
explicit scoped_buffer(size_t size): _size(size)
{
_buffer = new T[size];
}
scoped_buffer(const scoped_buffer& copy) = delete;
scoped_buffer(scoped_buffer&& move) noexcept
{
_buffer = move._buffer;
_size = move.size();
move._buffer = nullptr;
}
scoped_buffer operator=(scoped_buffer& copyAssignment) = delete;
scoped_buffer& operator=(scoped_buffer&& moveAssignment) noexcept
{
_buffer = moveAssignment._buffer;
_size = moveAssignment.size();
moveAssignment._buffer = nullptr;
return *this;
}
inline T& operator[](unsigned long index)
{
return _buffer[index];
}
inline const T& operator[](unsigned long index) const
{
return _buffer[index];
}
inline T* operator*()
{
return _buffer;
}
[[nodiscard]] inline size_t size() const
{
return _size;
}
inline T*& ptr()
{
return _buffer;
}
inline const T* const& ptr() const
{
return _buffer;
}
inline const T* const& data() const
{
return _buffer;
}
inline T*& data()
{
return _buffer;
}
ptr_iterator<T> begin()
{
return ptr_iterator{_buffer};
}
ptr_iterator<T> end()
{
return ptr_iterator{&_buffer[_size]};
}
~scoped_buffer()
{
delete[] _buffer;
}
};
template<typename T>
struct nullptr_initializer
{
private:
T* m_ptr = nullptr;
public:
nullptr_initializer() = default;
explicit nullptr_initializer(T* ptr): m_ptr(ptr)
{}
nullptr_initializer(const nullptr_initializer<T>& ptr): m_ptr(ptr.m_ptr)
{}
nullptr_initializer(nullptr_initializer<T>&& ptr) noexcept: m_ptr(ptr.m_ptr)
{}
nullptr_initializer<T>& operator=(const nullptr_initializer<T>& ptr)
{
if (&ptr == this)
return *this;
this->m_ptr = ptr.m_ptr;
return *this;
}
nullptr_initializer<T>& operator=(nullptr_initializer<T>&& ptr) noexcept
{
if (&ptr == this)
return *this;
this->m_ptr = ptr.m_ptr;
return *this;
}
inline T* operator->()
{
return m_ptr;
}
~nullptr_initializer() = default;
};
/**
* Creates a hash-map like association between an enum key and any arbitrary value.
* The storage is backed by a contiguous array for faster access.
* @tparam K enum value
* @tparam V associated value
*/
template<typename K, typename V>
class enum_storage
{
private:
V* m_values;
size_t m_size = 0;
public:
enum_storage(std::initializer_list<std::pair<K, V>> init)
{
for (auto& i : init)
m_size = std::max((size_t) i.first, m_size);
m_values = new V[m_size];
for (auto& v : init)
m_values[(size_t) v.first] = v.second;
}
inline V& operator[](size_t index)
{
return m_values[index];
}
inline const V& operator[](size_t index) const
{
return m_values[index];
}
[[nodiscard]] inline size_t size() const
{
return m_size;
}
ptr_iterator<V> begin()
{
return ptr_iterator{m_values};
}
ptr_iterator<V> end()
{
return ptr_iterator{&m_values[m_size]};
}
~enum_storage()
{
delete[] m_values;
}
};
template<typename T>
class area_allocator
{
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef void* void_pointer;
typedef const void* const_void_pointer;
private:
struct pointer_view
{
const_pointer p;
size_t n;
};
void expand()
{
size_t new_size = m_size * 2;
T* data = new T[new_size];
if constexpr (std::is_trivially_copyable_v<T>)
std::memcpy(data, m_data, m_size);
else if constexpr (std::is_move_assignable_v<T>)
{
for (size_t i = 0; i < m_size; i++)
data[i] = std::move(m_data[i]);
} else if constexpr (std::is_move_constructible_v<T>)
{
// is this bad? probably
for (size_t i = 0; i < m_size; i++)
data[i] = T(std::move(m_data));
} else if constexpr (std::is_copy_assignable_v<T>)
{
for (size_t i = 0; i < m_size; i++)
data[i] = m_data[i];
} else
{
static_assert("Unable to use this type with this allocator!");
}
delete[] m_data;
m_data = data;
m_size = new_size;
}
void realign()
{
}
public:
area_allocator()
{
m_data = new T[m_size];
}
[[nodiscard]] pointer* allocate(size_t n)
{
if (m_last + n > m_size)
expand();
pointer loc = &m_data[m_last];
m_last += n;
return loc;
}
void deallocate(pointer* p, size_t n) noexcept
{
deallocated_blocks.push({p, n});
m_deallocated += n;
// TODO: magic number
if (static_cast<double>(m_deallocated) / static_cast<double>(m_last) > 0.25)
realign();
}
~area_allocator()
{
delete[] m_data;
}
private:
// current size of the data
size_t m_size = 1;
// last allocated location
size_t m_last = 0;
// how many values have been deallocated
size_t m_deallocated = 0;
T* m_data = nullptr;
blt::flat_queue<pointer_view> deallocated_blocks;
};
}
#endif //BLT_TESTS_MEMORY_H