645 lines
20 KiB
C++
Executable File
645 lines
20 KiB
C++
Executable File
/*
|
|
* Created by Brett on 08/02/23.
|
|
* Licensed under GNU General Public License V3.0
|
|
* See LICENSE file for license detail
|
|
*/
|
|
|
|
#ifndef BLT_TESTS_MEMORY_H
|
|
#define BLT_TESTS_MEMORY_H
|
|
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <cstring>
|
|
#include "queue.h"
|
|
#include "utility.h"
|
|
#include <blt/std/assert.h>
|
|
#include <blt/std/logging.h>
|
|
#include <cstdint>
|
|
#include <type_traits>
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <cstring>
|
|
#include <array>
|
|
|
|
#if defined(__clang__) || defined(__llvm__) || defined(__GNUC__) || defined(__GNUG__)
|
|
|
|
#include <byteswap.h>
|
|
|
|
#define SWAP16(val) bswap_16(val)
|
|
#define SWAP32(val) bswap_32(val)
|
|
#define SWAP64(val) bswap_64(val)
|
|
#if __cplusplus >= 202002L
|
|
|
|
#include <bit>
|
|
|
|
#define ENDIAN_LOOKUP(little_endian) (std::endian::native == std::endian::little && !little_endian) || \
|
|
(std::endian::native == std::endian::big && little_endian)
|
|
#else
|
|
#define ENDIAN_LOOKUP(little_endian) !little_endian
|
|
#endif
|
|
#elif defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#define SWAP16(val) _byteswap_ushort(val)
|
|
#define SWAP32(val) _byteswap_ulong(val)
|
|
#define SWAP64(val) _byteswap_uint64(val)
|
|
#define ENDIAN_LOOKUP(little_endian) !little_endian
|
|
#endif
|
|
|
|
namespace blt
|
|
{
|
|
|
|
namespace mem
|
|
{
|
|
// Used to grab the byte-data of any T element. Defaults to Big Endian, however can be configured to use little endian
|
|
template<bool little_endian = false, typename BYTE_TYPE, typename T>
|
|
inline static int toBytes(const T& in, BYTE_TYPE* out)
|
|
{
|
|
if constexpr (!(std::is_same_v<BYTE_TYPE, std::int8_t> || std::is_same_v<BYTE_TYPE, std::uint8_t>))
|
|
static_assert("Must provide a signed/unsigned int8 type");
|
|
std::memcpy(out, (void*) &in, sizeof(T));
|
|
|
|
if constexpr (ENDIAN_LOOKUP(little_endian))
|
|
{
|
|
// TODO: this but better.
|
|
for (size_t i = 0; i < sizeof(T) / 2; i++)
|
|
std::swap(out[i], out[sizeof(T) - 1 - i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Used to cast the binary data of any T object, into a T object. Assumes data is in big ending (configurable)
|
|
template<bool little_endian = false, typename BYTE_TYPE, typename T>
|
|
inline static int fromBytes(const BYTE_TYPE* in, T& out)
|
|
{
|
|
if constexpr (!(std::is_same_v<BYTE_TYPE, std::int8_t> || std::is_same_v<BYTE_TYPE, std::uint8_t>))
|
|
static_assert("Must provide a signed/unsigned int8 type");
|
|
|
|
std::array<BYTE_TYPE, sizeof(T)> data;
|
|
std::memcpy(data.data(), in, sizeof(T));
|
|
|
|
if constexpr (ENDIAN_LOOKUP(little_endian))
|
|
{
|
|
// if we need to swap find the best way to do so
|
|
if constexpr (std::is_same_v<T, int16_t> || std::is_same_v<T, uint16_t>)
|
|
out = SWAP16(*reinterpret_cast<T*>(data.data()));
|
|
else if constexpr (std::is_same_v<T, int32_t> || std::is_same_v<T, uint32_t>)
|
|
out = SWAP32(*reinterpret_cast<T*>(data.data()));
|
|
else if constexpr (std::is_same_v<T, int64_t> || std::is_same_v<T, uint64_t>)
|
|
out = SWAP64(*reinterpret_cast<T*>(data.data()));
|
|
else
|
|
{
|
|
std::reverse(data.begin(), data.end());
|
|
out = *reinterpret_cast<T*>(data.data());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
template<bool little_endian = false, typename BYTE_TYPE, typename T>
|
|
inline static int fromBytes(const BYTE_TYPE* in, T* out)
|
|
{
|
|
return fromBytes(in, *out);
|
|
}
|
|
}
|
|
|
|
template<typename V>
|
|
struct ptr_iterator
|
|
{
|
|
public:
|
|
using iterator_category = std::random_access_iterator_tag;
|
|
using difference_type = std::ptrdiff_t;
|
|
using value_type = V;
|
|
using pointer = value_type*;
|
|
using reference = value_type&;
|
|
|
|
explicit ptr_iterator(V* v): _v(v)
|
|
{}
|
|
|
|
reference operator*() const
|
|
{ return *_v; }
|
|
|
|
pointer operator->()
|
|
{ return _v; }
|
|
|
|
ptr_iterator& operator++()
|
|
{
|
|
_v++;
|
|
return *this;
|
|
}
|
|
|
|
ptr_iterator& operator--()
|
|
{
|
|
_v--;
|
|
return *this;
|
|
}
|
|
|
|
ptr_iterator operator++(int)
|
|
{
|
|
auto tmp = *this;
|
|
++(*this);
|
|
return tmp;
|
|
}
|
|
|
|
ptr_iterator operator--(int)
|
|
{
|
|
auto tmp = *this;
|
|
--(*this);
|
|
return tmp;
|
|
}
|
|
|
|
friend bool operator==(const ptr_iterator& a, const ptr_iterator& b)
|
|
{
|
|
return a._v == b._v;
|
|
}
|
|
|
|
friend bool operator!=(const ptr_iterator& a, const ptr_iterator& b)
|
|
{
|
|
return a._v != b._v;
|
|
}
|
|
|
|
private:
|
|
V* _v;
|
|
};
|
|
|
|
/**
|
|
* Creates an encapsulation of a T array which will be automatically deleted when this object goes out of scope.
|
|
* This is a simple buffer meant to be used only inside of a function and not copied around.
|
|
* The internal buffer is allocated on the heap.
|
|
* The operator * has been overloaded to return the internal buffer.
|
|
* @tparam T type that is stored in buffer eg char
|
|
*/
|
|
template<typename T, bool = std::is_copy_constructible_v<T> || std::is_copy_assignable_v<T>>
|
|
class scoped_buffer
|
|
{
|
|
private:
|
|
T* buffer_ = nullptr;
|
|
size_t size_;
|
|
public:
|
|
scoped_buffer(): buffer_(nullptr), size_(0)
|
|
{}
|
|
|
|
explicit scoped_buffer(size_t size): size_(size)
|
|
{
|
|
if (size > 0)
|
|
buffer_ = new T[size];
|
|
else
|
|
buffer_ = nullptr;
|
|
}
|
|
|
|
scoped_buffer(const scoped_buffer& copy)
|
|
{
|
|
if (copy.size() == 0)
|
|
{
|
|
buffer_ = nullptr;
|
|
size_ = 0;
|
|
return;
|
|
}
|
|
buffer_ = new T[copy.size()];
|
|
size_ = copy.size_;
|
|
|
|
if constexpr (std::is_trivially_copyable_v<T>)
|
|
{
|
|
std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T));
|
|
} else
|
|
{
|
|
if constexpr (std::is_copy_constructible_v<T> && !std::is_copy_assignable_v<T>)
|
|
{
|
|
for (size_t i = 0; i < this->size_; i++)
|
|
buffer_[i] = T(copy[i]);
|
|
} else
|
|
for (size_t i = 0; i < this->size_; i++)
|
|
buffer_[i] = copy[i];
|
|
}
|
|
}
|
|
|
|
scoped_buffer& operator=(const scoped_buffer& copy)
|
|
{
|
|
if (© == this)
|
|
return *this;
|
|
|
|
if (copy.size() == 0)
|
|
{
|
|
buffer_ = nullptr;
|
|
size_ = 0;
|
|
return *this;
|
|
}
|
|
|
|
delete[] this->buffer_;
|
|
buffer_ = new T[copy.size()];
|
|
size_ = copy.size_;
|
|
|
|
if constexpr (std::is_trivially_copyable_v<T>)
|
|
{
|
|
std::memcpy(buffer_, copy.buffer_, copy.size() * sizeof(T));
|
|
} else
|
|
{
|
|
if constexpr (std::is_copy_constructible_v<T> && !std::is_copy_assignable_v<T>)
|
|
{
|
|
for (size_t i = 0; i < this->size_; i++)
|
|
buffer_[i] = T(copy[i]);
|
|
} else
|
|
for (size_t i = 0; i < this->size_; i++)
|
|
buffer_[i] = copy[i];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
scoped_buffer(scoped_buffer&& move) noexcept
|
|
{
|
|
delete[] buffer_;
|
|
buffer_ = move.buffer_;
|
|
size_ = move.size();
|
|
move.buffer_ = nullptr;
|
|
}
|
|
|
|
scoped_buffer& operator=(scoped_buffer&& moveAssignment) noexcept
|
|
{
|
|
delete[] buffer_;
|
|
buffer_ = moveAssignment.buffer_;
|
|
size_ = moveAssignment.size();
|
|
moveAssignment.buffer_ = nullptr;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline T& operator[](size_t index)
|
|
{
|
|
return buffer_[index];
|
|
}
|
|
|
|
inline const T& operator[](size_t index) const
|
|
{
|
|
return buffer_[index];
|
|
}
|
|
|
|
inline T* operator*()
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
[[nodiscard]] inline size_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
inline T*& ptr()
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline const T* const& ptr() const
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline const T* const& data() const
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline T*& data()
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline ptr_iterator<T> begin()
|
|
{
|
|
return ptr_iterator{buffer_};
|
|
}
|
|
|
|
inline ptr_iterator<T> end()
|
|
{
|
|
return ptr_iterator{&buffer_[size_]};
|
|
}
|
|
|
|
~scoped_buffer()
|
|
{
|
|
delete[] buffer_;
|
|
}
|
|
};
|
|
|
|
template<typename T, size_t MAX_SIZE>
|
|
class static_vector
|
|
{
|
|
private:
|
|
T buffer_[MAX_SIZE];
|
|
size_t size_ = 0;
|
|
public:
|
|
static_vector() = default;
|
|
|
|
inline bool push_back(const T& copy)
|
|
{
|
|
if (size_ >= MAX_SIZE)
|
|
return false;
|
|
buffer_[size_++] = copy;
|
|
return true;
|
|
}
|
|
|
|
inline bool push_back(T&& move)
|
|
{
|
|
if (size_ >= MAX_SIZE)
|
|
return false;
|
|
buffer_[size_++] = std::move(move);
|
|
return true;
|
|
}
|
|
|
|
inline T& at(size_t index)
|
|
{
|
|
if (index >= MAX_SIZE)
|
|
throw std::runtime_error("Array index " + std::to_string(index) + " out of bounds! (Max size: " + std::to_string(MAX_SIZE) + ')');
|
|
}
|
|
|
|
inline T& operator[](size_t index)
|
|
{
|
|
return buffer_[index];
|
|
}
|
|
|
|
inline const T& operator[](size_t index) const
|
|
{
|
|
return buffer_[index];
|
|
}
|
|
|
|
inline void reserve(size_t size)
|
|
{
|
|
if (size > MAX_SIZE)
|
|
size = MAX_SIZE;
|
|
size_ = size;
|
|
}
|
|
|
|
[[nodiscard]] inline size_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
[[nodiscard]] inline size_t capacity() const
|
|
{
|
|
return MAX_SIZE;
|
|
}
|
|
|
|
inline T* data()
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline T* operator*()
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline T* data() const
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline T* begin()
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
inline T* end()
|
|
{
|
|
return &buffer_[size_];
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
class scoped_buffer<T, false> : scoped_buffer<T, true>
|
|
{
|
|
using scoped_buffer<T, true>::scoped_buffer;
|
|
public:
|
|
scoped_buffer(const scoped_buffer& copy) = delete;
|
|
|
|
scoped_buffer operator=(scoped_buffer& copyAssignment) = delete;
|
|
};
|
|
|
|
template<typename T>
|
|
struct nullptr_initializer
|
|
{
|
|
private:
|
|
T* m_ptr = nullptr;
|
|
public:
|
|
nullptr_initializer() = default;
|
|
|
|
explicit nullptr_initializer(T* ptr): m_ptr(ptr)
|
|
{}
|
|
|
|
nullptr_initializer(const nullptr_initializer<T>& ptr): m_ptr(ptr.m_ptr)
|
|
{}
|
|
|
|
nullptr_initializer(nullptr_initializer<T>&& ptr) noexcept: m_ptr(ptr.m_ptr)
|
|
{}
|
|
|
|
nullptr_initializer<T>& operator=(const nullptr_initializer<T>& ptr)
|
|
{
|
|
if (&ptr == this)
|
|
return *this;
|
|
this->m_ptr = ptr.m_ptr;
|
|
return *this;
|
|
}
|
|
|
|
nullptr_initializer<T>& operator=(nullptr_initializer<T>&& ptr) noexcept
|
|
{
|
|
if (&ptr == this)
|
|
return *this;
|
|
this->m_ptr = ptr.m_ptr;
|
|
return *this;
|
|
}
|
|
|
|
inline T* operator->()
|
|
{
|
|
return m_ptr;
|
|
}
|
|
|
|
~nullptr_initializer() = default;
|
|
};
|
|
|
|
/**
|
|
* Creates a hash-map like association between an enum key and any arbitrary value.
|
|
* The storage is backed by a contiguous array for faster access.
|
|
* @tparam K enum value
|
|
* @tparam V associated value
|
|
*/
|
|
template<typename K, typename V>
|
|
class enum_storage
|
|
{
|
|
private:
|
|
V* m_values;
|
|
size_t m_size = 0;
|
|
public:
|
|
enum_storage(std::initializer_list<std::pair<K, V>> init)
|
|
{
|
|
for (auto& i : init)
|
|
m_size = std::max((size_t) i.first, m_size);
|
|
m_values = new V[m_size];
|
|
for (auto& v : init)
|
|
m_values[(size_t) v.first] = v.second;
|
|
}
|
|
|
|
inline V& operator[](size_t index)
|
|
{
|
|
return m_values[index];
|
|
}
|
|
|
|
inline const V& operator[](size_t index) const
|
|
{
|
|
return m_values[index];
|
|
}
|
|
|
|
[[nodiscard]] inline size_t size() const
|
|
{
|
|
return m_size;
|
|
}
|
|
|
|
ptr_iterator<V> begin()
|
|
{
|
|
return ptr_iterator{m_values};
|
|
}
|
|
|
|
ptr_iterator<V> end()
|
|
{
|
|
return ptr_iterator{&m_values[m_size]};
|
|
}
|
|
|
|
~enum_storage()
|
|
{
|
|
delete[] m_values;
|
|
}
|
|
};
|
|
|
|
template<typename T, size_t BLOCK_SIZE = 8192>
|
|
class area_allocator
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
typedef void* void_pointer;
|
|
typedef const void* const_void_pointer;
|
|
private:
|
|
struct pointer_view
|
|
{
|
|
pointer p;
|
|
size_t n;
|
|
};
|
|
|
|
struct block_storage
|
|
{
|
|
pointer data;
|
|
size_t used = 0;
|
|
// TODO: b-tree?
|
|
std::vector<pointer_view> unallocated_blocks;
|
|
};
|
|
|
|
inline void allocate_block()
|
|
{
|
|
BLT_INFO("Allocating a new block of size %d", BLOCK_SIZE);
|
|
auto* blk = new block_storage();
|
|
blk->data = static_cast<pointer>(malloc(sizeof(T) * BLOCK_SIZE));
|
|
blocks.push_back(blk);
|
|
}
|
|
|
|
inline pointer find_available_block(size_t n)
|
|
{
|
|
for (auto* blk : blocks)
|
|
{
|
|
size_t index = -1ull;
|
|
size_t leftover = 0;
|
|
for (auto kv : blt::enumerate(blk->unallocated_blocks))
|
|
{
|
|
if (kv.second.n >= n)
|
|
{
|
|
index = kv.first;
|
|
leftover = kv.second.n - n;
|
|
break;
|
|
}
|
|
}
|
|
if (index != -1ull)
|
|
{
|
|
pointer_view ptr = blk->unallocated_blocks[index];
|
|
std::iter_swap(blk->unallocated_blocks.begin() + index, blk->unallocated_blocks.end() - 1);
|
|
blk->unallocated_blocks.pop_back();
|
|
// BLT_INFO("Found block! %d, Unallocated leftover %d", index, leftover);
|
|
if (leftover > 0)
|
|
blk->unallocated_blocks.push_back({ptr.p + n, leftover});
|
|
return ptr.p;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
inline std::pair<pointer, size_t> getBlock(size_t n)
|
|
{
|
|
auto* blk = find_available_block(n);
|
|
if (blk != nullptr)
|
|
return {blk, 0};
|
|
|
|
if (blocks.back()->used + n > BLOCK_SIZE)
|
|
allocate_block();
|
|
|
|
auto ptr = std::pair<pointer, size_t>{blocks.back()->data, blocks.back()->used};
|
|
blocks.back()->used += n;
|
|
return ptr;
|
|
}
|
|
|
|
inline void allocate_in_block(pointer begin, size_t n)
|
|
{
|
|
if constexpr (std::is_default_constructible_v<T> && !std::is_trivially_default_constructible_v<T>)
|
|
{
|
|
for (size_t i = 0; i < n; i++)
|
|
new(&begin[i]) T();
|
|
}
|
|
}
|
|
|
|
public:
|
|
area_allocator()
|
|
{
|
|
allocate_block();
|
|
}
|
|
|
|
[[nodiscard]] pointer allocate(size_t n)
|
|
{
|
|
if (n > BLOCK_SIZE)
|
|
throw std::runtime_error("Requested allocation is too large!");
|
|
|
|
auto block_info = getBlock(n);
|
|
|
|
auto* ptr = &block_info.first[block_info.second];
|
|
// call constructors on the objects if they require it
|
|
allocate_in_block(ptr, n);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void deallocate(pointer p, size_t n) noexcept
|
|
{
|
|
for (size_t i = 0; i < n; i++)
|
|
p[i].~T();
|
|
for (auto*& blk : blocks)
|
|
{
|
|
if (p >= blk->data && p <= (blk->data + BLOCK_SIZE))
|
|
{
|
|
blk->unallocated_blocks.push_back({p, n});
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
~area_allocator()
|
|
{
|
|
for (auto*& blk : blocks)
|
|
{
|
|
free(blk->data);
|
|
delete blk;
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<block_storage*> blocks;
|
|
};
|
|
|
|
}
|
|
|
|
#endif //BLT_TESTS_MEMORY_H
|