1022 lines
34 KiB
C++
1022 lines
34 KiB
C++
/*
|
|
* Created by Brett on 28/02/23.
|
|
* Licensed under GNU General Public License V3.0
|
|
* See LICENSE file for license detail
|
|
*/
|
|
|
|
#ifndef BLT_TESTS_MATRIX_H
|
|
#define BLT_TESTS_MATRIX_H
|
|
|
|
#include <blt/math/vectors.h>
|
|
#include <cstring>
|
|
#include <type_traits>
|
|
#include <array>
|
|
#include <initializer_list>
|
|
|
|
#ifndef M_PI
|
|
// MSVC does not have M_PI
|
|
# define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
namespace blt
|
|
{
|
|
|
|
template<typename T, blt::u32 rows, blt::u32 columns>
|
|
class generalized_matrix
|
|
{
|
|
using matrix_t = generalized_matrix<T, rows, columns>;
|
|
enum class init_type
|
|
{
|
|
EMPTY,
|
|
IDENTITY
|
|
};
|
|
|
|
constexpr explicit generalized_matrix(init_type type)
|
|
{
|
|
switch (type)
|
|
{
|
|
case init_type::EMPTY:
|
|
break;
|
|
case init_type::IDENTITY:
|
|
set_identity();
|
|
break;
|
|
}
|
|
}
|
|
|
|
public:
|
|
constexpr generalized_matrix() = default;
|
|
|
|
constexpr generalized_matrix(const matrix_t& copy)
|
|
{
|
|
std::memcpy(data, copy.data, sizeof(matrix_t));
|
|
}
|
|
|
|
constexpr generalized_matrix(matrix_t&& move) noexcept
|
|
{
|
|
std::memcpy(data, move.data, sizeof(matrix_t));
|
|
}
|
|
|
|
constexpr matrix_t& operator=(const matrix_t& copy)
|
|
{
|
|
if (© == this)
|
|
return *this;
|
|
std::memcpy(data, copy.data, sizeof(matrix_t));
|
|
return *this;
|
|
}
|
|
|
|
constexpr generalized_matrix(std::initializer_list<T> list)
|
|
{
|
|
blt::size_t index = 0;
|
|
for (const auto& v : list)
|
|
{
|
|
data[(index / rows)][(index % rows)] = v;
|
|
index++;
|
|
}
|
|
}
|
|
|
|
constexpr generalized_matrix(std::initializer_list<blt::vec<float, rows>> list)
|
|
{
|
|
blt::size_t index = 0;
|
|
for (const auto& v : list)
|
|
{
|
|
data[index] = v;
|
|
index++;
|
|
}
|
|
}
|
|
|
|
constexpr explicit generalized_matrix(const std::array<T, rows * columns>& dat)
|
|
{
|
|
for (u32 i = 0; i < columns; i++)
|
|
for (u32 j = 0; j < rows; j++)
|
|
data[i][j] = dat[j + i * columns];
|
|
}
|
|
|
|
constexpr explicit generalized_matrix(const T dat[rows * columns])
|
|
{
|
|
for (u32 i = 0; i < columns; i++)
|
|
for (u32 j = 0; j < rows; j++)
|
|
data[i][j] = dat[j + i * columns];
|
|
}
|
|
|
|
constexpr explicit generalized_matrix(const blt::vec<T, rows> dat[columns])
|
|
{
|
|
for (u32 i = 0; i < columns; i++)
|
|
data[i] = dat[i];
|
|
}
|
|
|
|
constexpr static matrix_t make_empty()
|
|
{
|
|
return matrix_t{init_type::EMPTY};
|
|
}
|
|
|
|
constexpr static matrix_t make_identity()
|
|
{
|
|
static_assert(rows == columns && "Identity matrix must be square!");
|
|
return matrix_t{init_type::IDENTITY};
|
|
}
|
|
|
|
constexpr auto& set_identity()
|
|
{
|
|
for (blt::u32 i = 0; i < rows; i++)
|
|
data[i][i] = 1;
|
|
return *this;
|
|
}
|
|
|
|
constexpr generalized_matrix<T, columns, rows> transpose() const
|
|
{
|
|
generalized_matrix<T, columns, rows> mat;
|
|
|
|
for (blt::u32 i = 0; i < columns; i++)
|
|
{
|
|
for (blt::u32 j = 0; j < rows; j++)
|
|
mat[j][i] = data[i][j];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
T magnitude() const
|
|
{
|
|
T ret{};
|
|
for (blt::u32 i = 0; i < columns; i++)
|
|
{
|
|
for (blt::u32 j = 0; j < rows; j++)
|
|
ret += (data[i][j] * data[i][j]);
|
|
}
|
|
return std::sqrt(ret);
|
|
}
|
|
|
|
matrix_t normalize() const
|
|
{
|
|
auto mag = magnitude();
|
|
matrix_t mat = *this;
|
|
if (mag == 0)
|
|
return mat;
|
|
return mat / mag;
|
|
}
|
|
|
|
constexpr inline const blt::vec<T, rows>& operator[](u32 column) const
|
|
{
|
|
return data[column];
|
|
}
|
|
|
|
constexpr inline blt::vec<T, rows>& operator[](u32 column)
|
|
{
|
|
return data[column];
|
|
}
|
|
|
|
[[nodiscard]] constexpr inline T m(u32 row, u32 column) const
|
|
{
|
|
return data[column][row];
|
|
};
|
|
|
|
constexpr inline T m(u32 row, u32 column, T value)
|
|
{
|
|
return data[column][row] = value;
|
|
};
|
|
|
|
/**
|
|
* Takes a value stored across a row, taking one from each column in the specified row
|
|
* @param row the row to extract from. defaults to the first row
|
|
*/
|
|
constexpr inline vec<T, columns> vec_from_column_row(blt::u32 row = 0)
|
|
{
|
|
vec<T, columns> ret;
|
|
for (blt::u32 j = 0; j < columns; j++)
|
|
ret[j] = data[j][row];
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Assign to this matrix from the row information in each column of a matrix
|
|
* Where columns can be assigned directly from each-other, row stored data must be assigned this way
|
|
* this was hacked together for an assignment and a better way is a TODO;
|
|
* @param to_column column in this matrix to assign to
|
|
* @param row the row place that the value is store in to assign from. Defaults to the first element in each column
|
|
*/
|
|
template<blt::u32 p>
|
|
constexpr inline matrix_t& assign_to_column_from_column_rows(generalized_matrix<T, p, rows> mat, blt::u32 to_column, blt::u32 row = 0)
|
|
{
|
|
for (blt::u32 j = 0; j < rows; j++)
|
|
data[to_column][j] = mat[j][row];
|
|
return *this;
|
|
}
|
|
|
|
constexpr inline matrix_t& operator+=(const matrix_t& other)
|
|
{
|
|
for (blt::u32 i = 0; i < columns; i++)
|
|
data[i] += other[i];
|
|
return *this;
|
|
}
|
|
|
|
constexpr inline matrix_t& operator-=(const matrix_t& other)
|
|
{
|
|
for (blt::u32 i = 0; i < columns; i++)
|
|
data[i] -= other[i];
|
|
return *this;
|
|
}
|
|
|
|
constexpr inline matrix_t& operator*=(const matrix_t& other)
|
|
{
|
|
for (blt::u32 i = 0; i < columns; i++)
|
|
data[i] *= other[i];
|
|
return *this;
|
|
}
|
|
|
|
constexpr inline matrix_t& operator/=(const matrix_t& other)
|
|
{
|
|
for (blt::u32 i = 0; i < columns; i++)
|
|
data[i] /= other[i];
|
|
return *this;
|
|
}
|
|
|
|
// adds the two mat4x4 left and right
|
|
constexpr inline friend matrix_t operator+(const matrix_t& left, const matrix_t& right)
|
|
{
|
|
matrix_t ret = left;
|
|
for (u32 i = 0; i < columns; i++)
|
|
ret[i] += right.data[i];
|
|
return ret;
|
|
}
|
|
|
|
// subtracts the right mat4x4 from the left.
|
|
constexpr inline friend matrix_t operator-(const matrix_t& left, const matrix_t& right)
|
|
{
|
|
matrix_t ret = left;
|
|
for (u32 i = 0; i < columns; i++)
|
|
ret[i] -= right.data[i];
|
|
return ret;
|
|
}
|
|
|
|
// multiples the left with the right
|
|
template<blt::u32 p, typename Ret = generalized_matrix<T, rows, p>, std::enable_if_t<!(rows == 1 && p == 1), bool> = true>
|
|
constexpr inline friend Ret operator*(const matrix_t& left, const generalized_matrix<T, columns, p>& right)
|
|
{
|
|
Ret mat = Ret::make_empty();
|
|
|
|
for (u32 i = 0; i < rows; i++)
|
|
{
|
|
for (u32 j = 0; j < p; j++)
|
|
{
|
|
for (u32 k = 0; k < columns; k++)
|
|
mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j));
|
|
}
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
template<blt::u32 p, std::enable_if_t<rows == 1 && p == 1, bool> = true>
|
|
constexpr inline friend T operator*(const matrix_t& left, const generalized_matrix<T, columns, p>& right)
|
|
{
|
|
T ret{};
|
|
|
|
for (u32 i = 0; i < rows; i++)
|
|
{
|
|
for (u32 j = 0; j < p; j++)
|
|
{
|
|
for (u32 k = 0; k < columns; k++)
|
|
ret += left.m(i, k) * right.m(k, j);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
constexpr inline friend vec<T, rows> operator*(const matrix_t& left, const vec<T, columns>& right)
|
|
{
|
|
vec<T, rows> ret;
|
|
|
|
for (u32 r = 0; r < rows; r++)
|
|
{
|
|
for (u32 c = 0; c < columns; c++)
|
|
ret[r] = ret[r] + left.m(r, c) * right[c];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// multiplies the const c with each element in the mat4x4 v
|
|
constexpr inline friend matrix_t operator*(float c, const matrix_t& v)
|
|
{
|
|
matrix_t mat = make_empty();
|
|
|
|
for (u32 i = 0; i < columns; i++)
|
|
{
|
|
mat.data[i] = c * v.data[i];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// same as above but for right sided constants
|
|
constexpr inline friend matrix_t operator*(const matrix_t& v, float c)
|
|
{
|
|
matrix_t mat = make_empty();
|
|
|
|
for (u32 i = 0; i < columns; i++)
|
|
{
|
|
mat.data[i] = v.data[i] * c;
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// divides the mat4x4 by the constant c
|
|
constexpr inline friend matrix_t operator/(const matrix_t& v, float c)
|
|
{
|
|
matrix_t mat = make_empty();
|
|
|
|
for (u32 i = 0; i < columns; i++)
|
|
{
|
|
mat.data[i] = v.data[i] / c;
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// divides each element in the mat4x4 by over the constant
|
|
constexpr inline friend matrix_t operator/(float c, const matrix_t& v)
|
|
{
|
|
matrix_t mat = make_empty();
|
|
|
|
for (u32 i = 0; i < columns; i++)
|
|
{
|
|
for (u32 j = 0; j < rows; j++)
|
|
mat.data[i][j] = c / v.data[i][j];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
constexpr inline friend bool operator==(const matrix_t& left, const matrix_t& right)
|
|
{
|
|
for (blt::u32 i = 0; i < columns; i++)
|
|
{
|
|
if (left.data[i] != right.data[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
constexpr inline friend bool operator!=(const matrix_t& left, const matrix_t& right)
|
|
{
|
|
return !(left == right);
|
|
}
|
|
|
|
private:
|
|
blt::vec<T, rows> data[columns];
|
|
};
|
|
|
|
class mat4x4
|
|
{
|
|
static_assert(std::is_trivially_copyable_v<blt::vec4> && "Vector must be trivially copyable!");
|
|
protected:
|
|
// 4x4 = 16
|
|
// union dataType
|
|
// {
|
|
// float single[16];
|
|
// float dim[4][4];
|
|
// blt::vec4 v[4];
|
|
// };
|
|
blt::vec4 data[4];
|
|
|
|
friend mat4x4 operator+(const mat4x4& left, const mat4x4& right);
|
|
|
|
friend mat4x4 operator-(const mat4x4& left, const mat4x4& right);
|
|
|
|
friend mat4x4 operator*(const mat4x4& left, const mat4x4& right);
|
|
|
|
friend mat4x4 operator*(float c, const mat4x4& v);
|
|
|
|
friend mat4x4 operator*(const mat4x4& v, float c);
|
|
|
|
friend mat4x4 operator/(const mat4x4& v, float c);
|
|
|
|
friend mat4x4 operator/(float c, const mat4x4& v);
|
|
|
|
public:
|
|
static mat4x4 make_empty()
|
|
{
|
|
mat4x4 ret;
|
|
ret.m00(0);
|
|
ret.m11(0);
|
|
ret.m22(0);
|
|
ret.m33(0);
|
|
return ret;
|
|
}
|
|
|
|
mat4x4()
|
|
{
|
|
// for (float& i : data.single)
|
|
// i = 0;
|
|
// set identity matrix default
|
|
m00(1);
|
|
m11(1);
|
|
m22(1);
|
|
m33(1);
|
|
}
|
|
|
|
mat4x4(const blt::vec4& c1, const blt::vec4& c2, const blt::vec4& c3, const blt::vec4& c4)
|
|
{
|
|
// dangerous?
|
|
// std::memcpy(data.dim[0], c1.data(), 4 * sizeof(float));
|
|
// std::memcpy(data.dim[1], c2.data(), 4 * sizeof(float));
|
|
// std::memcpy(data.dim[2], c3.data(), 4 * sizeof(float));
|
|
// std::memcpy(data.dim[3], c4.data(), 4 * sizeof(float));
|
|
data[0] = c1;
|
|
data[1] = c2;
|
|
data[2] = c3;
|
|
data[3] = c4;
|
|
}
|
|
|
|
mat4x4(const mat4x4& mat)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
data[i] = mat.data[i];
|
|
}
|
|
}
|
|
|
|
mat4x4& operator=(const mat4x4& copy)
|
|
{
|
|
if (© == this)
|
|
return *this;
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
data[i] = copy.data[i];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
explicit mat4x4(const float dat[16])
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
for (int j = 0; j < 4; j++)
|
|
data[i][j] = dat[j + i * 4];
|
|
}
|
|
|
|
explicit mat4x4(const blt::vec4 dat[4])
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
data[i] = dat[i];
|
|
}
|
|
|
|
inline mat4x4& translate(float x, float y, float z)
|
|
{
|
|
mat4x4 translation_mat{};
|
|
/**
|
|
* 9.005 Are OpenGL matrices column-major or row-major?
|
|
* For programming purposes, OpenGL matrices are 16-value arrays with base vectors laid out contiguously in memory.
|
|
* The translation components occupy the 13th, 14th, and 15th elements of the 16-element matrix,
|
|
* where indices are numbered from 1 to 16 as described in section 2.11.2 of the OpenGL 2.1 Specification.
|
|
*/
|
|
translation_mat.m03(x);
|
|
translation_mat.m13(y);
|
|
translation_mat.m23(z);
|
|
|
|
*this = *this * translation_mat;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline mat4x4& translate(const vec4& vec)
|
|
{ return translate(vec[0], vec[1], vec[2]); }
|
|
|
|
inline mat4x4& translate(const vec3& vec)
|
|
{ return translate(vec[0], vec[1], vec[2]); }
|
|
|
|
inline mat4x4& translate(const vec2& vec)
|
|
{ return translate(vec[0], vec[1], 0); }
|
|
|
|
inline mat4x4& scale(float x, float y, float z)
|
|
{
|
|
mat4x4 scale_mat{};
|
|
|
|
m00(m00() * x);
|
|
m11(m11() * y);
|
|
m22(m22() * z);
|
|
|
|
*this = *this * scale_mat;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline mat4x4& scale(const vec4& vec)
|
|
{ return scale(vec[0], vec[1], vec[2]); }
|
|
|
|
inline mat4x4& scale(const vec3& vec)
|
|
{ return scale(vec[0], vec[1], vec[2]); }
|
|
|
|
inline mat4x4& scale(const vec2& vec)
|
|
{ return scale(vec[0], vec[1], 1.0f); }
|
|
|
|
// angle in radians
|
|
inline mat4x4& rotateX(float angle)
|
|
{
|
|
mat4x4 rotationMatrix{};
|
|
rotationMatrix.m(1, 1, std::cos(angle));
|
|
rotationMatrix.m(1, 2, -std::sin(angle));
|
|
rotationMatrix.m(2, 1, std::sin(angle));
|
|
rotationMatrix.m(2, 2, std::cos(angle));
|
|
|
|
*this = *this * rotationMatrix;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline mat4x4& rotateY(float angle)
|
|
{
|
|
mat4x4 rotationMatrix{};
|
|
rotationMatrix.m(0, 0, std::cos(angle));
|
|
rotationMatrix.m(0, 2, std::sin(angle));
|
|
rotationMatrix.m(2, 0, -std::sin(angle));
|
|
rotationMatrix.m(2, 2, std::cos(angle));
|
|
|
|
*this = *this * rotationMatrix;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline mat4x4& rotateZ(float angle)
|
|
{
|
|
mat4x4 rotationMatrix{};
|
|
rotationMatrix.m(0, 0, std::cos(angle));
|
|
rotationMatrix.m(0, 1, -std::sin(angle));
|
|
rotationMatrix.m(1, 0, std::sin(angle));
|
|
rotationMatrix.m(1, 1, std::cos(angle));
|
|
|
|
*this = *this * rotationMatrix;
|
|
|
|
return *this;
|
|
}
|
|
|
|
[[nodiscard]] mat4x4 transpose() const
|
|
{
|
|
mat4x4 copy{*this};
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
copy.m(j, i, m(i, j));
|
|
}
|
|
}
|
|
|
|
return copy;
|
|
}
|
|
|
|
[[nodiscard]] float determinant() const
|
|
{
|
|
return m00() * (m11() * m22() * m33() + m12() * m23() * m31() + m13() * m21() * m32()
|
|
- m31() * m22() * m13() - m32() * m23() * m11() - m33() * m21() * m12())
|
|
- m10() * (m01() * m22() * m33() + m02() * m23() * m31() + m03() * m21() * m32()
|
|
- m31() * m32() * m03() - m32() * m23() * m01() - m33() * m21() * m02())
|
|
+ m20() * (m01() * m12() * m33() + m02() * m13() * m31() + m03() * m11() * m32()
|
|
- m31() * m12() * m03() - m32() * m13() * m01() - m33() * m11() * m02())
|
|
- m30() * (m01() * m12() * m23() + m02() * m13() * m21() + m03() * m11() * m22()
|
|
- m21() * m12() * m03() - m22() * m13() * m01() - m23() * m11() * m02());
|
|
}
|
|
|
|
[[nodiscard]] mat4x4 adjugate() const
|
|
{
|
|
auto& m = *this;
|
|
auto Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
|
auto Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
|
|
auto Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
|
|
|
|
auto Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
|
auto Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
auto Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
|
|
|
|
auto Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
|
auto Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
|
|
auto Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
|
|
|
|
auto Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
|
auto Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
|
|
auto Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
|
|
|
|
auto Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
|
auto Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
|
|
auto Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
|
|
|
|
auto Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
|
auto Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
|
|
auto Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
|
|
|
|
blt::vec4 Fac0(Coef00, Coef00, Coef02, Coef03);
|
|
blt::vec4 Fac1(Coef04, Coef04, Coef06, Coef07);
|
|
blt::vec4 Fac2(Coef08, Coef08, Coef10, Coef11);
|
|
blt::vec4 Fac3(Coef12, Coef12, Coef14, Coef15);
|
|
blt::vec4 Fac4(Coef16, Coef16, Coef18, Coef19);
|
|
blt::vec4 Fac5(Coef20, Coef20, Coef22, Coef23);
|
|
|
|
blt::vec4 Vec0(m[1][0], m[0][0], m[0][0], m[0][0]);
|
|
blt::vec4 Vec1(m[1][1], m[0][1], m[0][1], m[0][1]);
|
|
blt::vec4 Vec2(m[1][2], m[0][2], m[0][2], m[0][2]);
|
|
blt::vec4 Vec3(m[1][3], m[0][3], m[0][3], m[0][3]);
|
|
|
|
blt::vec4 Inv0(Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2);
|
|
blt::vec4 Inv1(Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4);
|
|
blt::vec4 Inv2(Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5);
|
|
blt::vec4 Inv3(Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5);
|
|
|
|
blt::vec4 SignA(+1, -1, +1, -1);
|
|
blt::vec4 SignB(-1, +1, -1, +1);
|
|
return mat4x4(Inv0 * SignA, Inv1 * SignB, Inv2 * SignA, Inv3 * SignB);
|
|
}
|
|
|
|
[[nodiscard]] mat4x4 inverse() const
|
|
{
|
|
auto& m = *this;
|
|
auto Inverse = adjugate();
|
|
|
|
blt::vec4 Row0(Inverse[0][0], Inverse[1][0], Inverse[2][0], Inverse[3][0]);
|
|
|
|
blt::vec4 Dot0(m[0] * Row0);
|
|
auto Dot1 = (Dot0.x() + Dot0.y()) + (Dot0.z() + Dot0.w());
|
|
|
|
auto OneOverDeterminant = 1.0f / Dot1;
|
|
|
|
return Inverse * OneOverDeterminant;
|
|
}
|
|
|
|
inline const blt::vec4& operator[](int column) const
|
|
{
|
|
return data[column];
|
|
}
|
|
|
|
inline blt::vec4& operator[](int column)
|
|
{
|
|
return data[column];
|
|
}
|
|
|
|
[[nodiscard]] inline float m(int row, int column) const
|
|
{ return data[column][row]; };
|
|
|
|
[[nodiscard]] inline float m00() const
|
|
{ return m(0, 0); }
|
|
|
|
[[nodiscard]] inline float m10() const
|
|
{ return m(1, 0); }
|
|
|
|
[[nodiscard]] inline float m20() const
|
|
{ return m(2, 0); }
|
|
|
|
[[nodiscard]] inline float m30() const
|
|
{ return m(3, 0); }
|
|
|
|
[[nodiscard]] inline float m01() const
|
|
{ return m(0, 1); }
|
|
|
|
[[nodiscard]] inline float m11() const
|
|
{ return m(1, 1); }
|
|
|
|
[[nodiscard]] inline float m21() const
|
|
{ return m(2, 1); }
|
|
|
|
[[nodiscard]] inline float m31() const
|
|
{ return m(3, 1); }
|
|
|
|
[[nodiscard]] inline float m02() const
|
|
{ return m(0, 2); }
|
|
|
|
[[nodiscard]] inline float m12() const
|
|
{ return m(1, 2); }
|
|
|
|
[[nodiscard]] inline float m22() const
|
|
{ return m(2, 2); }
|
|
|
|
[[nodiscard]] inline float m32() const
|
|
{ return m(3, 2); }
|
|
|
|
[[nodiscard]] inline float m03() const
|
|
{ return m(0, 3); }
|
|
|
|
[[nodiscard]] inline float m13() const
|
|
{ return m(1, 3); }
|
|
|
|
[[nodiscard]] inline float m23() const
|
|
{ return m(2, 3); }
|
|
|
|
[[nodiscard]] inline float m33() const
|
|
{ return m(3, 3); }
|
|
|
|
inline float m(int row, int column, float value)
|
|
{ return data[column][row] = value; };
|
|
|
|
inline float m00(float d)
|
|
{ return m(0, 0, d); }
|
|
|
|
inline float m10(float d)
|
|
{ return m(1, 0, d); }
|
|
|
|
inline float m20(float d)
|
|
{ return m(2, 0, d); }
|
|
|
|
inline float m30(float d)
|
|
{ return m(3, 0, d); }
|
|
|
|
inline float m01(float d)
|
|
{ return m(0, 1, d); }
|
|
|
|
inline float m11(float d)
|
|
{ return m(1, 1, d); }
|
|
|
|
inline float m21(float d)
|
|
{ return m(2, 1, d); }
|
|
|
|
inline float m31(float d)
|
|
{ return m(3, 1, d); }
|
|
|
|
inline float m02(float d)
|
|
{ return m(0, 2, d); }
|
|
|
|
inline float m12(float d)
|
|
{ return m(1, 2, d); }
|
|
|
|
inline float m22(float d)
|
|
{ return m(2, 2, d); }
|
|
|
|
inline float m32(float d)
|
|
{ return m(3, 2, d); }
|
|
|
|
inline float m03(float d)
|
|
{ return m(0, 3, d); }
|
|
|
|
inline float m13(float d)
|
|
{ return m(1, 3, d); }
|
|
|
|
inline float m23(float d)
|
|
{ return m(2, 3, d); }
|
|
|
|
inline float m33(float d)
|
|
{ return m(3, 3, d); }
|
|
|
|
[[nodiscard]] inline float w(int row, int column) const
|
|
{ return data[column - 1][row - 1]; };
|
|
|
|
[[nodiscard]] inline float w11() const
|
|
{ return m(0, 0); }
|
|
|
|
[[nodiscard]] inline float w21() const
|
|
{ return m(1, 0); }
|
|
|
|
[[nodiscard]] inline float w31() const
|
|
{ return m(2, 0); }
|
|
|
|
[[nodiscard]] inline float w41() const
|
|
{ return m(3, 0); }
|
|
|
|
[[nodiscard]] inline float w12() const
|
|
{ return m(0, 1); }
|
|
|
|
[[nodiscard]] inline float w22() const
|
|
{ return m(1, 1); }
|
|
|
|
[[nodiscard]] inline float w32() const
|
|
{ return m(2, 1); }
|
|
|
|
[[nodiscard]] inline float w42() const
|
|
{ return m(3, 1); }
|
|
|
|
[[nodiscard]] inline float w13() const
|
|
{ return m(0, 2); }
|
|
|
|
[[nodiscard]] inline float w23() const
|
|
{ return m(1, 2); }
|
|
|
|
[[nodiscard]] inline float w33() const
|
|
{ return m(2, 2); }
|
|
|
|
[[nodiscard]] inline float w43() const
|
|
{ return m(3, 2); }
|
|
|
|
[[nodiscard]] inline float w14() const
|
|
{ return m(0, 3); }
|
|
|
|
[[nodiscard]] inline float w24() const
|
|
{ return m(1, 3); }
|
|
|
|
[[nodiscard]] inline float w34() const
|
|
{ return m(2, 3); }
|
|
|
|
[[nodiscard]] inline float w44() const
|
|
{ return m(3, 3); }
|
|
|
|
inline float w(int row, int column, float value)
|
|
{ return data[column - 1][row - 1] = value; };
|
|
|
|
inline float w11(float d)
|
|
{ return m(0, 0, d); }
|
|
|
|
inline float w21(float d)
|
|
{ return m(1, 0, d); }
|
|
|
|
inline float w31(float d)
|
|
{ return m(2, 0, d); }
|
|
|
|
inline float w41(float d)
|
|
{ return m(3, 0, d); }
|
|
|
|
inline float w12(float d)
|
|
{ return m(0, 1, d); }
|
|
|
|
inline float w22(float d)
|
|
{ return m(1, 1, d); }
|
|
|
|
inline float w32(float d)
|
|
{ return m(2, 1, d); }
|
|
|
|
inline float w42(float d)
|
|
{ return m(3, 1, d); }
|
|
|
|
inline float w13(float d)
|
|
{ return m(0, 2, d); }
|
|
|
|
inline float w23(float d)
|
|
{ return m(1, 2, d); }
|
|
|
|
inline float w33(float d)
|
|
{ return m(2, 2, d); }
|
|
|
|
inline float w43(float d)
|
|
{ return m(3, 2, d); }
|
|
|
|
inline float w14(float d)
|
|
{ return m(0, 3, d); }
|
|
|
|
inline float w24(float d)
|
|
{ return m(1, 3, d); }
|
|
|
|
inline float w34(float d)
|
|
{ return m(2, 3, d); }
|
|
|
|
inline float w44(float d)
|
|
{ return m(3, 3, d); }
|
|
|
|
inline float* ptr()
|
|
{ return data[0].data(); }
|
|
};
|
|
|
|
// adds the two mat4x4 left and right
|
|
inline mat4x4 operator+(const mat4x4& left, const mat4x4& right)
|
|
{
|
|
mat4x4 ret = left;
|
|
for (int i = 0; i < 4; i++)
|
|
ret[i] += right.data[i];
|
|
return ret;
|
|
}
|
|
|
|
// subtracts the right mat4x4 from the left.
|
|
inline mat4x4 operator-(const mat4x4& left, const mat4x4& right)
|
|
{
|
|
mat4x4 ret = left;
|
|
for (int i = 0; i < 4; i++)
|
|
ret[i] -= right.data[i];
|
|
return ret;
|
|
}
|
|
|
|
// since matrices are made identity by default, we need to create the result collector matrix without identity
|
|
// otherwise the diagonal will be 1 off and cause weird results (see black screen issue)
|
|
constexpr float emptyMatrix[16] = {0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0};
|
|
|
|
// multiples the left with the right
|
|
inline mat4x4 operator*(const mat4x4& left, const mat4x4& right)
|
|
{
|
|
mat4x4 mat = mat4x4::make_empty();
|
|
|
|
// TODO: check avx with this??
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
for (int k = 0; k < 4; k++)
|
|
{
|
|
mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
inline vec4 operator*(const mat4x4& left, const vec4& right)
|
|
{
|
|
vec4 ret{0, 0, 0, 0};
|
|
|
|
for (int m = 0; m < 4; m++)
|
|
{
|
|
for (int n = 0; n < 4; n++)
|
|
{
|
|
ret[m] = ret[m] + left.m(m, n) * right[n];
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
template<typename T, unsigned long size>
|
|
inline vec4 operator*(const mat4x4& left, const vec<T, size>& right)
|
|
{
|
|
vec4 ret{0, 0, 0, 0};
|
|
|
|
for (int i = 0; i < size; i++)
|
|
ret[i] = (float) right[i];
|
|
|
|
return left * ret;
|
|
}
|
|
|
|
// multiplies the const c with each element in the mat4x4 v
|
|
inline mat4x4 operator*(float c, const mat4x4& v)
|
|
{
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
mat.data[i] = c * v.data[i];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// same as above but for right sided constants
|
|
inline mat4x4 operator*(const mat4x4& v, float c)
|
|
{
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
mat.data[i] = v.data[i] * c;
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// divides the mat4x4 by the constant c
|
|
inline mat4x4 operator/(const mat4x4& v, float c)
|
|
{
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
mat.data[i] = v.data[i] / c;
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// divides each element in the mat4x4 by over the constant
|
|
inline mat4x4 operator/(float c, const mat4x4& v)
|
|
{
|
|
mat4x4 mat{};
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
for (int j = 0; j < 4; j++)
|
|
mat.data[i][j] = c / v.data[i][j];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
// https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
|
|
// https://ogldev.org/www/tutorial12/tutorial12.html
|
|
// http://www.songho.ca/opengl/gl_projectionmatrix.html
|
|
static inline mat4x4 perspective(float fov, float aspect_ratio, float near, float far)
|
|
{
|
|
mat4x4 perspectiveMat4x4 = mat4x4::make_empty();
|
|
|
|
float halfTan = tanf(fov * 0.5f * (float) M_PI / 180.0f);
|
|
perspectiveMat4x4.m00(float(1.0 / (aspect_ratio * halfTan)));
|
|
perspectiveMat4x4.m11(float(1.0 / halfTan));
|
|
perspectiveMat4x4.m22(float(-((far + near) / (far - near))));
|
|
perspectiveMat4x4.m32(-1);
|
|
perspectiveMat4x4.m23(float(-((2 * near * far) / (far - near))));
|
|
|
|
return perspectiveMat4x4;
|
|
}
|
|
|
|
static inline mat4x4 ortho(float left, float right, float top, float bottom, float near, float far)
|
|
{
|
|
mat4x4 perspectiveMat4x4 = mat4x4::make_empty();
|
|
|
|
perspectiveMat4x4.m00(2 / (right - left));
|
|
perspectiveMat4x4.m11(2 / (top - bottom));
|
|
perspectiveMat4x4.m22(2 / (far - near));
|
|
perspectiveMat4x4.m33(1);
|
|
perspectiveMat4x4.m03(-(right + left) / (right - left));
|
|
perspectiveMat4x4.m13(-(top + bottom) / (top - bottom));
|
|
perspectiveMat4x4.m23(-(far + near) / (far - near));
|
|
|
|
return perspectiveMat4x4;
|
|
}
|
|
|
|
}
|
|
|
|
#endif //BLT_TESTS_MATRIX_H
|