BLT/include/blt/math/matrix.h

1022 lines
34 KiB
C++

/*
* Created by Brett on 28/02/23.
* Licensed under GNU General Public License V3.0
* See LICENSE file for license detail
*/
#ifndef BLT_TESTS_MATRIX_H
#define BLT_TESTS_MATRIX_H
#include <blt/math/vectors.h>
#include <cstring>
#include <type_traits>
#include <array>
#include <initializer_list>
#ifndef M_PI
// MSVC does not have M_PI
# define M_PI 3.14159265358979323846
#endif
namespace blt
{
template<typename T, blt::u32 rows, blt::u32 columns>
class generalized_matrix
{
using matrix_t = generalized_matrix<T, rows, columns>;
enum class init_type
{
EMPTY,
IDENTITY
};
constexpr explicit generalized_matrix(init_type type)
{
switch (type)
{
case init_type::EMPTY:
break;
case init_type::IDENTITY:
set_identity();
break;
}
}
public:
constexpr generalized_matrix() = default;
constexpr generalized_matrix(const matrix_t& copy)
{
std::memcpy(data, copy.data, sizeof(matrix_t));
}
constexpr generalized_matrix(matrix_t&& move) noexcept
{
std::memcpy(data, move.data, sizeof(matrix_t));
}
constexpr matrix_t& operator=(const matrix_t& copy)
{
if (&copy == this)
return *this;
std::memcpy(data, copy.data, sizeof(matrix_t));
return *this;
}
constexpr generalized_matrix(std::initializer_list<T> list)
{
blt::size_t index = 0;
for (const auto& v : list)
{
data[(index / rows)][(index % rows)] = v;
index++;
}
}
constexpr generalized_matrix(std::initializer_list<blt::vec<float, rows>> list)
{
blt::size_t index = 0;
for (const auto& v : list)
{
data[index] = v;
index++;
}
}
constexpr explicit generalized_matrix(const std::array<T, rows * columns>& dat)
{
for (u32 i = 0; i < columns; i++)
for (u32 j = 0; j < rows; j++)
data[i][j] = dat[j + i * columns];
}
constexpr explicit generalized_matrix(const T dat[rows * columns])
{
for (u32 i = 0; i < columns; i++)
for (u32 j = 0; j < rows; j++)
data[i][j] = dat[j + i * columns];
}
constexpr explicit generalized_matrix(const blt::vec<T, rows> dat[columns])
{
for (u32 i = 0; i < columns; i++)
data[i] = dat[i];
}
constexpr static matrix_t make_empty()
{
return matrix_t{init_type::EMPTY};
}
constexpr static matrix_t make_identity()
{
static_assert(rows == columns && "Identity matrix must be square!");
return matrix_t{init_type::IDENTITY};
}
constexpr auto& set_identity()
{
for (blt::u32 i = 0; i < rows; i++)
data[i][i] = 1;
return *this;
}
constexpr generalized_matrix<T, columns, rows> transpose() const
{
generalized_matrix<T, columns, rows> mat;
for (blt::u32 i = 0; i < columns; i++)
{
for (blt::u32 j = 0; j < rows; j++)
mat[j][i] = data[i][j];
}
return mat;
}
T magnitude() const
{
T ret{};
for (blt::u32 i = 0; i < columns; i++)
{
for (blt::u32 j = 0; j < rows; j++)
ret += (data[i][j] * data[i][j]);
}
return std::sqrt(ret);
}
matrix_t normalize() const
{
auto mag = magnitude();
matrix_t mat = *this;
if (mag == 0)
return mat;
return mat / mag;
}
constexpr inline const blt::vec<T, rows>& operator[](u32 column) const
{
return data[column];
}
constexpr inline blt::vec<T, rows>& operator[](u32 column)
{
return data[column];
}
[[nodiscard]] constexpr inline T m(u32 row, u32 column) const
{
return data[column][row];
};
constexpr inline T m(u32 row, u32 column, T value)
{
return data[column][row] = value;
};
/**
* Takes a value stored across a row, taking one from each column in the specified row
* @param row the row to extract from. defaults to the first row
*/
constexpr inline vec<T, columns> vec_from_column_row(blt::u32 row = 0)
{
vec<T, columns> ret;
for (blt::u32 j = 0; j < columns; j++)
ret[j] = data[j][row];
return ret;
}
/**
* Assign to this matrix from the row information in each column of a matrix
* Where columns can be assigned directly from each-other, row stored data must be assigned this way
* this was hacked together for an assignment and a better way is a TODO;
* @param to_column column in this matrix to assign to
* @param row the row place that the value is store in to assign from. Defaults to the first element in each column
*/
template<blt::u32 p>
constexpr inline matrix_t& assign_to_column_from_column_rows(generalized_matrix<T, p, rows> mat, blt::u32 to_column, blt::u32 row = 0)
{
for (blt::u32 j = 0; j < rows; j++)
data[to_column][j] = mat[j][row];
return *this;
}
constexpr inline matrix_t& operator+=(const matrix_t& other)
{
for (blt::u32 i = 0; i < columns; i++)
data[i] += other[i];
return *this;
}
constexpr inline matrix_t& operator-=(const matrix_t& other)
{
for (blt::u32 i = 0; i < columns; i++)
data[i] -= other[i];
return *this;
}
constexpr inline matrix_t& operator*=(const matrix_t& other)
{
for (blt::u32 i = 0; i < columns; i++)
data[i] *= other[i];
return *this;
}
constexpr inline matrix_t& operator/=(const matrix_t& other)
{
for (blt::u32 i = 0; i < columns; i++)
data[i] /= other[i];
return *this;
}
// adds the two mat4x4 left and right
constexpr inline friend matrix_t operator+(const matrix_t& left, const matrix_t& right)
{
matrix_t ret = left;
for (u32 i = 0; i < columns; i++)
ret[i] += right.data[i];
return ret;
}
// subtracts the right mat4x4 from the left.
constexpr inline friend matrix_t operator-(const matrix_t& left, const matrix_t& right)
{
matrix_t ret = left;
for (u32 i = 0; i < columns; i++)
ret[i] -= right.data[i];
return ret;
}
// multiples the left with the right
template<blt::u32 p, typename Ret = generalized_matrix<T, rows, p>, std::enable_if_t<!(rows == 1 && p == 1), bool> = true>
constexpr inline friend Ret operator*(const matrix_t& left, const generalized_matrix<T, columns, p>& right)
{
Ret mat = Ret::make_empty();
for (u32 i = 0; i < rows; i++)
{
for (u32 j = 0; j < p; j++)
{
for (u32 k = 0; k < columns; k++)
mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j));
}
}
return mat;
}
template<blt::u32 p, std::enable_if_t<rows == 1 && p == 1, bool> = true>
constexpr inline friend T operator*(const matrix_t& left, const generalized_matrix<T, columns, p>& right)
{
T ret{};
for (u32 i = 0; i < rows; i++)
{
for (u32 j = 0; j < p; j++)
{
for (u32 k = 0; k < columns; k++)
ret += left.m(i, k) * right.m(k, j);
}
}
return ret;
}
constexpr inline friend vec<T, rows> operator*(const matrix_t& left, const vec<T, columns>& right)
{
vec<T, rows> ret;
for (u32 r = 0; r < rows; r++)
{
for (u32 c = 0; c < columns; c++)
ret[r] = ret[r] + left.m(r, c) * right[c];
}
return ret;
}
// multiplies the const c with each element in the mat4x4 v
constexpr inline friend matrix_t operator*(float c, const matrix_t& v)
{
matrix_t mat = make_empty();
for (u32 i = 0; i < columns; i++)
{
mat.data[i] = c * v.data[i];
}
return mat;
}
// same as above but for right sided constants
constexpr inline friend matrix_t operator*(const matrix_t& v, float c)
{
matrix_t mat = make_empty();
for (u32 i = 0; i < columns; i++)
{
mat.data[i] = v.data[i] * c;
}
return mat;
}
// divides the mat4x4 by the constant c
constexpr inline friend matrix_t operator/(const matrix_t& v, float c)
{
matrix_t mat = make_empty();
for (u32 i = 0; i < columns; i++)
{
mat.data[i] = v.data[i] / c;
}
return mat;
}
// divides each element in the mat4x4 by over the constant
constexpr inline friend matrix_t operator/(float c, const matrix_t& v)
{
matrix_t mat = make_empty();
for (u32 i = 0; i < columns; i++)
{
for (u32 j = 0; j < rows; j++)
mat.data[i][j] = c / v.data[i][j];
}
return mat;
}
constexpr inline friend bool operator==(const matrix_t& left, const matrix_t& right)
{
for (blt::u32 i = 0; i < columns; i++)
{
if (left.data[i] != right.data[i])
return false;
}
return true;
}
constexpr inline friend bool operator!=(const matrix_t& left, const matrix_t& right)
{
return !(left == right);
}
private:
blt::vec<T, rows> data[columns];
};
class mat4x4
{
static_assert(std::is_trivially_copyable_v<blt::vec4> && "Vector must be trivially copyable!");
protected:
// 4x4 = 16
// union dataType
// {
// float single[16];
// float dim[4][4];
// blt::vec4 v[4];
// };
blt::vec4 data[4];
friend mat4x4 operator+(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator-(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator*(const mat4x4& left, const mat4x4& right);
friend mat4x4 operator*(float c, const mat4x4& v);
friend mat4x4 operator*(const mat4x4& v, float c);
friend mat4x4 operator/(const mat4x4& v, float c);
friend mat4x4 operator/(float c, const mat4x4& v);
public:
static mat4x4 make_empty()
{
mat4x4 ret;
ret.m00(0);
ret.m11(0);
ret.m22(0);
ret.m33(0);
return ret;
}
mat4x4()
{
// for (float& i : data.single)
// i = 0;
// set identity matrix default
m00(1);
m11(1);
m22(1);
m33(1);
}
mat4x4(const blt::vec4& c1, const blt::vec4& c2, const blt::vec4& c3, const blt::vec4& c4)
{
// dangerous?
// std::memcpy(data.dim[0], c1.data(), 4 * sizeof(float));
// std::memcpy(data.dim[1], c2.data(), 4 * sizeof(float));
// std::memcpy(data.dim[2], c3.data(), 4 * sizeof(float));
// std::memcpy(data.dim[3], c4.data(), 4 * sizeof(float));
data[0] = c1;
data[1] = c2;
data[2] = c3;
data[3] = c4;
}
mat4x4(const mat4x4& mat)
{
for (int i = 0; i < 4; i++)
{
data[i] = mat.data[i];
}
}
mat4x4& operator=(const mat4x4& copy)
{
if (&copy == this)
return *this;
for (int i = 0; i < 4; i++)
{
data[i] = copy.data[i];
}
return *this;
}
explicit mat4x4(const float dat[16])
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
data[i][j] = dat[j + i * 4];
}
explicit mat4x4(const blt::vec4 dat[4])
{
for (int i = 0; i < 4; i++)
data[i] = dat[i];
}
inline mat4x4& translate(float x, float y, float z)
{
mat4x4 translation_mat{};
/**
* 9.005 Are OpenGL matrices column-major or row-major?
* For programming purposes, OpenGL matrices are 16-value arrays with base vectors laid out contiguously in memory.
* The translation components occupy the 13th, 14th, and 15th elements of the 16-element matrix,
* where indices are numbered from 1 to 16 as described in section 2.11.2 of the OpenGL 2.1 Specification.
*/
translation_mat.m03(x);
translation_mat.m13(y);
translation_mat.m23(z);
*this = *this * translation_mat;
return *this;
}
inline mat4x4& translate(const vec4& vec)
{ return translate(vec[0], vec[1], vec[2]); }
inline mat4x4& translate(const vec3& vec)
{ return translate(vec[0], vec[1], vec[2]); }
inline mat4x4& translate(const vec2& vec)
{ return translate(vec[0], vec[1], 0); }
inline mat4x4& scale(float x, float y, float z)
{
mat4x4 scale_mat{};
m00(m00() * x);
m11(m11() * y);
m22(m22() * z);
*this = *this * scale_mat;
return *this;
}
inline mat4x4& scale(const vec4& vec)
{ return scale(vec[0], vec[1], vec[2]); }
inline mat4x4& scale(const vec3& vec)
{ return scale(vec[0], vec[1], vec[2]); }
inline mat4x4& scale(const vec2& vec)
{ return scale(vec[0], vec[1], 1.0f); }
// angle in radians
inline mat4x4& rotateX(float angle)
{
mat4x4 rotationMatrix{};
rotationMatrix.m(1, 1, std::cos(angle));
rotationMatrix.m(1, 2, -std::sin(angle));
rotationMatrix.m(2, 1, std::sin(angle));
rotationMatrix.m(2, 2, std::cos(angle));
*this = *this * rotationMatrix;
return *this;
}
inline mat4x4& rotateY(float angle)
{
mat4x4 rotationMatrix{};
rotationMatrix.m(0, 0, std::cos(angle));
rotationMatrix.m(0, 2, std::sin(angle));
rotationMatrix.m(2, 0, -std::sin(angle));
rotationMatrix.m(2, 2, std::cos(angle));
*this = *this * rotationMatrix;
return *this;
}
inline mat4x4& rotateZ(float angle)
{
mat4x4 rotationMatrix{};
rotationMatrix.m(0, 0, std::cos(angle));
rotationMatrix.m(0, 1, -std::sin(angle));
rotationMatrix.m(1, 0, std::sin(angle));
rotationMatrix.m(1, 1, std::cos(angle));
*this = *this * rotationMatrix;
return *this;
}
[[nodiscard]] mat4x4 transpose() const
{
mat4x4 copy{*this};
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
copy.m(j, i, m(i, j));
}
}
return copy;
}
[[nodiscard]] float determinant() const
{
return m00() * (m11() * m22() * m33() + m12() * m23() * m31() + m13() * m21() * m32()
- m31() * m22() * m13() - m32() * m23() * m11() - m33() * m21() * m12())
- m10() * (m01() * m22() * m33() + m02() * m23() * m31() + m03() * m21() * m32()
- m31() * m32() * m03() - m32() * m23() * m01() - m33() * m21() * m02())
+ m20() * (m01() * m12() * m33() + m02() * m13() * m31() + m03() * m11() * m32()
- m31() * m12() * m03() - m32() * m13() * m01() - m33() * m11() * m02())
- m30() * (m01() * m12() * m23() + m02() * m13() * m21() + m03() * m11() * m22()
- m21() * m12() * m03() - m22() * m13() * m01() - m23() * m11() * m02());
}
[[nodiscard]] mat4x4 adjugate() const
{
auto& m = *this;
auto Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
auto Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
auto Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
auto Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
auto Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
auto Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
auto Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
auto Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
auto Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
auto Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
auto Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
auto Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
auto Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
auto Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
auto Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
auto Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
auto Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
auto Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
blt::vec4 Fac0(Coef00, Coef00, Coef02, Coef03);
blt::vec4 Fac1(Coef04, Coef04, Coef06, Coef07);
blt::vec4 Fac2(Coef08, Coef08, Coef10, Coef11);
blt::vec4 Fac3(Coef12, Coef12, Coef14, Coef15);
blt::vec4 Fac4(Coef16, Coef16, Coef18, Coef19);
blt::vec4 Fac5(Coef20, Coef20, Coef22, Coef23);
blt::vec4 Vec0(m[1][0], m[0][0], m[0][0], m[0][0]);
blt::vec4 Vec1(m[1][1], m[0][1], m[0][1], m[0][1]);
blt::vec4 Vec2(m[1][2], m[0][2], m[0][2], m[0][2]);
blt::vec4 Vec3(m[1][3], m[0][3], m[0][3], m[0][3]);
blt::vec4 Inv0(Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2);
blt::vec4 Inv1(Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4);
blt::vec4 Inv2(Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5);
blt::vec4 Inv3(Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5);
blt::vec4 SignA(+1, -1, +1, -1);
blt::vec4 SignB(-1, +1, -1, +1);
return mat4x4(Inv0 * SignA, Inv1 * SignB, Inv2 * SignA, Inv3 * SignB);
}
[[nodiscard]] mat4x4 inverse() const
{
auto& m = *this;
auto Inverse = adjugate();
blt::vec4 Row0(Inverse[0][0], Inverse[1][0], Inverse[2][0], Inverse[3][0]);
blt::vec4 Dot0(m[0] * Row0);
auto Dot1 = (Dot0.x() + Dot0.y()) + (Dot0.z() + Dot0.w());
auto OneOverDeterminant = 1.0f / Dot1;
return Inverse * OneOverDeterminant;
}
inline const blt::vec4& operator[](int column) const
{
return data[column];
}
inline blt::vec4& operator[](int column)
{
return data[column];
}
[[nodiscard]] inline float m(int row, int column) const
{ return data[column][row]; };
[[nodiscard]] inline float m00() const
{ return m(0, 0); }
[[nodiscard]] inline float m10() const
{ return m(1, 0); }
[[nodiscard]] inline float m20() const
{ return m(2, 0); }
[[nodiscard]] inline float m30() const
{ return m(3, 0); }
[[nodiscard]] inline float m01() const
{ return m(0, 1); }
[[nodiscard]] inline float m11() const
{ return m(1, 1); }
[[nodiscard]] inline float m21() const
{ return m(2, 1); }
[[nodiscard]] inline float m31() const
{ return m(3, 1); }
[[nodiscard]] inline float m02() const
{ return m(0, 2); }
[[nodiscard]] inline float m12() const
{ return m(1, 2); }
[[nodiscard]] inline float m22() const
{ return m(2, 2); }
[[nodiscard]] inline float m32() const
{ return m(3, 2); }
[[nodiscard]] inline float m03() const
{ return m(0, 3); }
[[nodiscard]] inline float m13() const
{ return m(1, 3); }
[[nodiscard]] inline float m23() const
{ return m(2, 3); }
[[nodiscard]] inline float m33() const
{ return m(3, 3); }
inline float m(int row, int column, float value)
{ return data[column][row] = value; };
inline float m00(float d)
{ return m(0, 0, d); }
inline float m10(float d)
{ return m(1, 0, d); }
inline float m20(float d)
{ return m(2, 0, d); }
inline float m30(float d)
{ return m(3, 0, d); }
inline float m01(float d)
{ return m(0, 1, d); }
inline float m11(float d)
{ return m(1, 1, d); }
inline float m21(float d)
{ return m(2, 1, d); }
inline float m31(float d)
{ return m(3, 1, d); }
inline float m02(float d)
{ return m(0, 2, d); }
inline float m12(float d)
{ return m(1, 2, d); }
inline float m22(float d)
{ return m(2, 2, d); }
inline float m32(float d)
{ return m(3, 2, d); }
inline float m03(float d)
{ return m(0, 3, d); }
inline float m13(float d)
{ return m(1, 3, d); }
inline float m23(float d)
{ return m(2, 3, d); }
inline float m33(float d)
{ return m(3, 3, d); }
[[nodiscard]] inline float w(int row, int column) const
{ return data[column - 1][row - 1]; };
[[nodiscard]] inline float w11() const
{ return m(0, 0); }
[[nodiscard]] inline float w21() const
{ return m(1, 0); }
[[nodiscard]] inline float w31() const
{ return m(2, 0); }
[[nodiscard]] inline float w41() const
{ return m(3, 0); }
[[nodiscard]] inline float w12() const
{ return m(0, 1); }
[[nodiscard]] inline float w22() const
{ return m(1, 1); }
[[nodiscard]] inline float w32() const
{ return m(2, 1); }
[[nodiscard]] inline float w42() const
{ return m(3, 1); }
[[nodiscard]] inline float w13() const
{ return m(0, 2); }
[[nodiscard]] inline float w23() const
{ return m(1, 2); }
[[nodiscard]] inline float w33() const
{ return m(2, 2); }
[[nodiscard]] inline float w43() const
{ return m(3, 2); }
[[nodiscard]] inline float w14() const
{ return m(0, 3); }
[[nodiscard]] inline float w24() const
{ return m(1, 3); }
[[nodiscard]] inline float w34() const
{ return m(2, 3); }
[[nodiscard]] inline float w44() const
{ return m(3, 3); }
inline float w(int row, int column, float value)
{ return data[column - 1][row - 1] = value; };
inline float w11(float d)
{ return m(0, 0, d); }
inline float w21(float d)
{ return m(1, 0, d); }
inline float w31(float d)
{ return m(2, 0, d); }
inline float w41(float d)
{ return m(3, 0, d); }
inline float w12(float d)
{ return m(0, 1, d); }
inline float w22(float d)
{ return m(1, 1, d); }
inline float w32(float d)
{ return m(2, 1, d); }
inline float w42(float d)
{ return m(3, 1, d); }
inline float w13(float d)
{ return m(0, 2, d); }
inline float w23(float d)
{ return m(1, 2, d); }
inline float w33(float d)
{ return m(2, 2, d); }
inline float w43(float d)
{ return m(3, 2, d); }
inline float w14(float d)
{ return m(0, 3, d); }
inline float w24(float d)
{ return m(1, 3, d); }
inline float w34(float d)
{ return m(2, 3, d); }
inline float w44(float d)
{ return m(3, 3, d); }
inline float* ptr()
{ return data[0].data(); }
};
// adds the two mat4x4 left and right
inline mat4x4 operator+(const mat4x4& left, const mat4x4& right)
{
mat4x4 ret = left;
for (int i = 0; i < 4; i++)
ret[i] += right.data[i];
return ret;
}
// subtracts the right mat4x4 from the left.
inline mat4x4 operator-(const mat4x4& left, const mat4x4& right)
{
mat4x4 ret = left;
for (int i = 0; i < 4; i++)
ret[i] -= right.data[i];
return ret;
}
// since matrices are made identity by default, we need to create the result collector matrix without identity
// otherwise the diagonal will be 1 off and cause weird results (see black screen issue)
constexpr float emptyMatrix[16] = {0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
// multiples the left with the right
inline mat4x4 operator*(const mat4x4& left, const mat4x4& right)
{
mat4x4 mat = mat4x4::make_empty();
// TODO: check avx with this??
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
for (int k = 0; k < 4; k++)
{
mat.m(i, j, mat.m(i, j) + left.m(i, k) * right.m(k, j));
}
}
}
return mat;
}
inline vec4 operator*(const mat4x4& left, const vec4& right)
{
vec4 ret{0, 0, 0, 0};
for (int m = 0; m < 4; m++)
{
for (int n = 0; n < 4; n++)
{
ret[m] = ret[m] + left.m(m, n) * right[n];
}
}
return ret;
}
template<typename T, unsigned long size>
inline vec4 operator*(const mat4x4& left, const vec<T, size>& right)
{
vec4 ret{0, 0, 0, 0};
for (int i = 0; i < size; i++)
ret[i] = (float) right[i];
return left * ret;
}
// multiplies the const c with each element in the mat4x4 v
inline mat4x4 operator*(float c, const mat4x4& v)
{
mat4x4 mat{};
for (int i = 0; i < 4; i++)
{
mat.data[i] = c * v.data[i];
}
return mat;
}
// same as above but for right sided constants
inline mat4x4 operator*(const mat4x4& v, float c)
{
mat4x4 mat{};
for (int i = 0; i < 4; i++)
{
mat.data[i] = v.data[i] * c;
}
return mat;
}
// divides the mat4x4 by the constant c
inline mat4x4 operator/(const mat4x4& v, float c)
{
mat4x4 mat{};
for (int i = 0; i < 4; i++)
{
mat.data[i] = v.data[i] / c;
}
return mat;
}
// divides each element in the mat4x4 by over the constant
inline mat4x4 operator/(float c, const mat4x4& v)
{
mat4x4 mat{};
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
mat.data[i][j] = c / v.data[i][j];
}
return mat;
}
// https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
// https://ogldev.org/www/tutorial12/tutorial12.html
// http://www.songho.ca/opengl/gl_projectionmatrix.html
static inline mat4x4 perspective(float fov, float aspect_ratio, float near, float far)
{
mat4x4 perspectiveMat4x4 = mat4x4::make_empty();
float halfTan = tanf(fov * 0.5f * (float) M_PI / 180.0f);
perspectiveMat4x4.m00(float(1.0 / (aspect_ratio * halfTan)));
perspectiveMat4x4.m11(float(1.0 / halfTan));
perspectiveMat4x4.m22(float(-((far + near) / (far - near))));
perspectiveMat4x4.m32(-1);
perspectiveMat4x4.m23(float(-((2 * near * far) / (far - near))));
return perspectiveMat4x4;
}
static inline mat4x4 ortho(float left, float right, float top, float bottom, float near, float far)
{
mat4x4 perspectiveMat4x4 = mat4x4::make_empty();
perspectiveMat4x4.m00(2 / (right - left));
perspectiveMat4x4.m11(2 / (top - bottom));
perspectiveMat4x4.m22(2 / (far - near));
perspectiveMat4x4.m33(1);
perspectiveMat4x4.m03(-(right + left) / (right - left));
perspectiveMat4x4.m13(-(top + bottom) / (top - bottom));
perspectiveMat4x4.m23(-(far + near) / (far - near));
return perspectiveMat4x4;
}
}
#endif //BLT_TESTS_MATRIX_H