BLT/include/blt/std/binary_tree.h

168 lines
6.1 KiB
C++

/*
* Created by Brett on 09/01/23.
* Licensed under GNU General Public License V3.0
* See LICENSE file for license detail
*/
#include <stdexcept>
#include <vector>
#include <blt/std/queue.h>
#ifndef BLT_BINARY_TREE_H
#define BLT_BINARY_TREE_H
namespace blt {
class binary_search_tree_error : public std::runtime_error {
public:
explicit binary_search_tree_error(const std::string& string): runtime_error(string) {}
};
template<typename T>
class node_binary_search_tree {
protected:
struct BST_node {
BST_node* left = nullptr;
BST_node* right = nullptr;
T payload;
~BST_node() {
delete (left);
delete (right);
}
};
BST_node* m_root = nullptr;
private:
void insert(BST_node* root, const T& element) {
BST_node* searchNode = root;
// basically we are iterating through the tree looking for a valid node to insert into.
while (true) {
// check for left and right tree traversal if it exists
if (searchNode->left != nullptr && element < searchNode->left->payload) {
searchNode = searchNode->left;
continue;
}
if (searchNode->right != nullptr && element > searchNode->right->payload) {
searchNode = searchNode->right;
continue;
}
if (element == searchNode->payload)
throw binary_search_tree_error{"Unable to insert. Nodes cannot have equal values!\n"};
// insert into the lowest node consistent with a BST
if (element < searchNode->payload) {
searchNode->left = new BST_node();
searchNode->left->payload = element;
} else {
searchNode->right = new BST_node();
searchNode->right->payload = element;
}
return;
}
}
BST_node* search(BST_node*& parent, const T& element) {
BST_node* searchNode = m_root;
// basically we are iterating through the tree looking for a valid node to insert into.
while (true) {
if (searchNode->payload == element)
return searchNode->payload;
// check for left and right tree traversal if it exists
if (searchNode->left != nullptr && element < searchNode->left->payload) {
parent = searchNode;
searchNode = searchNode->left;
continue;
}
if (searchNode->right != nullptr && element > searchNode->right->payload) {
parent = searchNode;
searchNode = searchNode->right;
continue;
}
}
}
std::vector<BST_node*> inOrderTraverse(BST_node* root) {
std::vector<BST_node*> nodes{};
blt::flat_stack<BST_node*> nodeStack{};
BST_node* current = root;
while (current != nullptr || !nodeStack.isEmpty()) {
// go all the way to the left subtree
while (current != nullptr){
nodeStack.push(current);
current = current->left;
}
// take the parent node of the left most subtree
current = nodeStack.top();
nodeStack.pop();
nodes.push_back(current);
// traverse its right tree
current = current->right;
}
return nodes;
}
public:
node_binary_search_tree() {
m_root = new BST_node();
}
void insert(const T& element) {
insert(m_root, element);
}
[[nodiscard]] BST_node* search(const T& element) const {
return search(nullptr, element);
}
void remove(const T& element) {
BST_node* parent = nullptr;
BST_node* elementNode = search(parent, element);
BST_node*& parentChildSide = parent->left;
if (parent->right == elementNode)
parentChildSide = parent->right;
if (elementNode->left != nullptr && elementNode->right != nullptr){
parentChildSide = nullptr;
// reconstruct subtree. More efficient way of doing this... TODO
std::vector<BST_node*> subNodes = inOrderTraverse(elementNode);
for (auto* node : subNodes){
// insert will create a new node, we must delete old one to prevent memory leaks
if (node != elementNode) {
insert(parent, node->payload);
delete(node);
}
}
} else {
parentChildSide = elementNode->left != nullptr ? elementNode->left : elementNode->right;
}
delete(elementNode);
}
std::vector<BST_node*> inOrderTraverse(){
return inOrderTraverse(m_root);
}
~node_binary_search_tree() {
delete (m_root);
}
};
template<typename T>
class flat_binary_search_tree {
private:
};
template<typename T>
using node_BST = node_binary_search_tree<T>;
template<typename T>
using flat_BST = flat_binary_search_tree<T>;
}
#endif //BLT_BINARY_TREE_H