
COSC 3P91 – Assignment 4 – 6920201 & 6973523

BRETT TERPSTRA & MICHAEL BOULOS, Brock University, Canada

1 Info

The attached project is a strategy game played on the system console, which acts as the

interface between a player and the game world. The game runs on a runnable gameEngine
object which facilitates game events, keeps track of game events, and defines the top-level

behaviour between game objects. Appropriately, execution of the game begins within the

main function, which instantiates the game engine and calls its run function.

Within the run function is the game loop for this strategy game. The game loop involves

seven main user-triggered main events, and one main underlying update event:

User-Triggered Event Event Description

Build When this event is triggered, the engine builds the building

specified in the command line arguments associated with the

command, adding it to the user map contained in the engine

members.

Train When this event is triggered, the engine trains/produces the

inhabitants specified in the command line arguments associated

with the command, adding them to the list of inhabitants in the

associated user map.

Upgrade When the upgrade event is triggered, the engine upgrades the

unit specified by the index argument and type argument

associated with the command, the engine will upgrade the

building accordingly to the next allowed stage given the index is

valid within the list of units in the map and when the village

resource requirements are met.

Explore When the explore event is triggered, the engine will display the

next possible map to attack, generated based on find a suitable

village relative to the player village’s stats.

Attack Explored When the attack event is triggered, the engine will utilize the

stats of both the player village and the last non-player village

explored to generate an attack result.

Generating Army When the generate army event is triggered, the engine will

generate an independent enemy army for testing the defences of

the player village.

Test Village Using the previous triggered generate army event, the engine

will have armies attack the player village for testing the

defensive capability of the player village.

Background Event Event Description

Update The update event calls every game loop; it utilizes an in-map

timer object, specified in its own utility timer class to facilitate

the timing on when certain resources will be mined/produced

and other time sensitive game events.

Networking Info

The strategy game featured in the project uses networking APIs in Java to facilitate a

client/server model execution of the above game loop. The general architecture of the project

features a utility class Server, which manages the network state of various clients and

communicating with multiple game clients. The main method creates a new instance of the

Client which allows a player to communicate with the server, however, multiple clients can

be handled by the server as well. User input is entered through the input stream on the client

side, which is then sent to the server that processes the input request and executes the event

related to the request, after which, the server sends a response to the client – which the client

interprets and outputs on the console.

2 Game Usage

To use the game project, a game server must exist and be running, so to begin, run the main

method on the MainServer class in the source directory – this starts up the game server

which uses the console to log requests and responses.

Then, to play the game through a game client, run the MainClient class (the Main class is

just for demonstration, but any executable Java class with a main function can just create a

Client object and talk to the server); this creates a game client instance which connects to

the server.

After which, you can enter in any of the common game commands from the previous non-

networked versions of the game, ie. 1 <building name> to build, 2 <inhabitant name> to

train, etc.

Ideally when starting, type ‘5’ in the input to display your initial village and your

options as a player.

3 Sockets

The use of sockets in the project is to facilitate the communication between the server and

client over the network, through the aptly named classes Server and Client. The strategy

game, in particular, uses UDP Datagram Sockets to send and receive Datagram Packets back

and forth from the server and participating clients.

Fig. 1. Part of the Server class, this example code shows part of the code that uses a Datagram Packet to

receive input from a client over the network

Fig. 2. Part of the Client class, this example code shows part of the code that uses a Datagram Packet to

send input to a server over the network

The reason the study opted to use UDP, despite that TCP would have made more sense in the

context of game communication not being in real time, was because there was a preference

for using discrete packets instead of streams for more control. ~Also, we did it for the joke!

4 Client / Server Communication

To make the communication between the client and the server more standardized, a

PacketIDs class, which acts as a packet frame, contains static byte headers that the server

and client can use to identify different types of packets that represent different requests and

messages types being passed.

Fig. 3. The PacketIDs class, it contains all the possible headers for

the types of packets that can be passed by the Server and client

In addition to the packet frame, the project also employs a primitive 2-way handshake for

user authentication. The ACK packet header exists to allow the server and client to make and

acknowledgement of the client/server connection prior to communication.

5 Multithreading the Server

 Activities on the server side are multithreaded to allow multiple clients/players to

interact with the game; the server contains a thread for listening and threads for responding to

requests from specific clients. Each time a new client connects, a thread is created running an

instance of the ConnectedClient class that corresponds to that given client, with its own

unique client ID that matches that of the connected game client.

Fig. 4. The ConnectedClient class, it allows the server to handle

multiple clients concurrently by delegating threads to ensure each client

is responded to per request.

On the client-side, there also exists a receive thread which allows the client to send a request

while a previous request is awaiting a response. The server handles all the messages,

eventually responding to incoming client requests sequentially by way of a

‘pendingRequests’ queue per ConnectedClient thread.

DOCUMENT END

