158 lines
7.0 KiB
C
158 lines
7.0 KiB
C
|
/*
|
||
|
* Created by Brett Terpstra 6920201 on 17/10/22.
|
||
|
* Copyright (c) 2022 Brett Terpstra. All Rights Reserved.
|
||
|
*/
|
||
|
|
||
|
#ifndef STEP_2_BVH_H
|
||
|
#define STEP_2_BVH_H
|
||
|
|
||
|
#include <util/std.h>
|
||
|
#include <types.h>
|
||
|
|
||
|
#include <utility>
|
||
|
|
||
|
// A currently pure header implementation of a BVH. TODO: make source file.
|
||
|
// this is also for testing and might not make it into the step 2.
|
||
|
|
||
|
namespace Raytracing {
|
||
|
|
||
|
struct BVHNode {
|
||
|
public:
|
||
|
std::vector<Object*> objs;
|
||
|
AABB aabb;
|
||
|
BVHNode* left;
|
||
|
BVHNode* right;
|
||
|
BVHNode(std::vector<Object*> objs, AABB aabb, BVHNode* left, BVHNode* right): objs(std::move(objs)), aabb(std::move(aabb)),
|
||
|
left(left), right(right) {}
|
||
|
~BVHNode() {
|
||
|
delete (left);
|
||
|
delete (right);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class BVHTree {
|
||
|
private:
|
||
|
const int MAX_TREE_DEPTH = 50;
|
||
|
BVHNode* root = nullptr;
|
||
|
|
||
|
void del() {
|
||
|
// delete copied objects
|
||
|
for (auto* obj : root->objs)
|
||
|
delete(obj);
|
||
|
delete (root);
|
||
|
}
|
||
|
|
||
|
// splits the objs in the vector based on the provided AABBs
|
||
|
static std::pair<std::vector<Object*>, std::vector<Object*>>
|
||
|
partition(const std::pair<AABB, AABB>& aabbs, const std::vector<Object*>& objs) {
|
||
|
std::vector<Object*> a1;
|
||
|
std::vector<Object*> a2;
|
||
|
for (auto* obj: objs) {
|
||
|
// if this object doesn't have an AABB, we cannot use a BVH on it
|
||
|
if (obj->getAABB().isEmpty()) {
|
||
|
throw std::runtime_error("Invalid AABB provided to the BVH! (Your implementation is flawed)");
|
||
|
}
|
||
|
if (obj->getAABB().intersects(aabbs.first)) {
|
||
|
a1.push_back(obj);
|
||
|
} else if (obj->getAABB().intersects(aabbs.second)) {
|
||
|
a2.push_back(obj);
|
||
|
}
|
||
|
//tlog << "OBJ: " << obj->getAABB() << " " << obj->getAABB().intersects(aabbs.first) << " " << obj->getAABB().intersects(aabbs.second) << " " << objs.size() << "\n";
|
||
|
}
|
||
|
//tlog << "we split into two of sizes: " << a1.size() << " " << a2.size() << " orig size: " << (a1.size() + a2.size()) << "\n";
|
||
|
return {a1, a2};
|
||
|
}
|
||
|
|
||
|
BVHNode* addObjectsRecur(const std::vector<Object*>& objects, unsigned long prevSize) {
|
||
|
//ilog << "size: " << objects.size() << "\n";
|
||
|
// prevSize was required to solve some really weird bugs
|
||
|
// which are a TODO:
|
||
|
if ((objects.size() <= 2 && !objects.empty()) || prevSize == objects.size()) {
|
||
|
AABB local;
|
||
|
for (const auto& obj: objects)
|
||
|
local = local.expand(obj->getAABB());
|
||
|
return new BVHNode(objects, local, nullptr, nullptr);
|
||
|
} else if (objects.empty()) // should never reach here!!
|
||
|
return nullptr;
|
||
|
// create a volume for the entire world.
|
||
|
// yes, we could use the recursion provided AABB,
|
||
|
// but that wouldn't be minimum, only half.
|
||
|
// this ensures that we have a minimum AABB.
|
||
|
AABB world;
|
||
|
for (const auto& obj: objects) {
|
||
|
//tlog << obj->getAABB();
|
||
|
world = world.expand(obj->getAABB());
|
||
|
}
|
||
|
//tlog << "\n";
|
||
|
// then split and partition the world
|
||
|
auto spltAABB = world.splitByLongestAxis();
|
||
|
//dlog << "We have " << world << " being split into: \n\t" << spltAABB.first << "\n\t" << spltAABB.second << "\n";
|
||
|
auto partitionedObjs = partition(spltAABB, objects);
|
||
|
|
||
|
BVHNode* left = nullptr;
|
||
|
BVHNode* right = nullptr;
|
||
|
// don't try to explore nodes which don't have anything in them.
|
||
|
if (!partitionedObjs.first.empty())
|
||
|
left = addObjectsRecur(partitionedObjs.first, objects.size());
|
||
|
if (!partitionedObjs.second.empty())
|
||
|
right = addObjectsRecur(partitionedObjs.second, objects.size());
|
||
|
|
||
|
return new BVHNode(objects, world, left, right);
|
||
|
}
|
||
|
static std::vector<Object*>
|
||
|
traverseFindRayIntersection(BVHNode* node, const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) {
|
||
|
// check for intersections on both sides of the tree
|
||
|
if (node->left != nullptr) {
|
||
|
if (node->left->aabb.intersects(ray, min, max))
|
||
|
return traverseFindRayIntersection(node->left, ray, min, max);
|
||
|
}
|
||
|
// since each aabb should be minimum, we shouldn't have to traverse both sides.
|
||
|
// we want to reduce our problem size by half each iteration anyways
|
||
|
// divide and conquer and so on
|
||
|
if (node->right != nullptr)
|
||
|
if (node->right->aabb.intersects(ray, min, max))
|
||
|
return traverseFindRayIntersection(node->left, ray, min, max);
|
||
|
// return the objects of the lowest BVH node we can find
|
||
|
// if this is implemented properly this should only contain one, maybe two objects
|
||
|
// which is much faster! (especially when dealing with triangles)
|
||
|
return node->objs;
|
||
|
}
|
||
|
public:
|
||
|
std::vector<Object*> noAABBObjects;
|
||
|
explicit BVHTree(const std::vector<Object*>& objectsInWorld) {
|
||
|
addObjects(objectsInWorld);
|
||
|
}
|
||
|
|
||
|
void addObjects(const std::vector<Object*>& objects) {
|
||
|
if (root != nullptr)
|
||
|
del();
|
||
|
// move all the object's aabb's into world position
|
||
|
std::vector<Object*> objs;
|
||
|
for (auto* obj: objects) {
|
||
|
// we don't want to store all the AABBs which don't exist
|
||
|
// ie spheres
|
||
|
if (obj->getAABB().isEmpty()) {
|
||
|
//tlog << "Goodbye\n";
|
||
|
noAABBObjects.push_back(obj);
|
||
|
continue;
|
||
|
}
|
||
|
Object* objCopy = obj->clone();
|
||
|
objCopy->setAABB(obj->getAABB().translate(obj->getPosition()));
|
||
|
objs.push_back(objCopy);
|
||
|
}
|
||
|
root = addObjectsRecur(objs, -1);
|
||
|
}
|
||
|
|
||
|
std::vector<Object*> rayIntersect(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) {
|
||
|
return traverseFindRayIntersection(root, ray, min, max);
|
||
|
}
|
||
|
|
||
|
~BVHTree() {
|
||
|
del();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif //STEP_2_BVH_H
|