COSC-3P93-Project/Step 3/src/engine/raytracing.cpp

145 lines
6.6 KiB
C++
Raw Normal View History

/*
* Created by Brett Terpstra 6920201 on 16/10/22.
* Copyright (c) 2022 Brett Terpstra. All Rights Reserved.
*/
#include "engine/raytracing.h"
#include <queue>
#include <functional>
#include <engine/util/debug.h>
namespace Raytracing {
Ray Camera::projectRay(PRECISION_TYPE x, PRECISION_TYPE y) {
// transform the x and y to points from image coords to be inside the camera's viewport.
double transformedX = (x / (image.getWidth() - 1));
auto transformedY = (y / (image.getHeight() - 1));
// then generate a ray which extends out from the camera position in the direction with respects to its position on the image
return {position, imageOrigin + transformedX * horizontalAxis + transformedY * verticalAxis - position};
}
void Camera::lookAt(const Vec4& pos, const Vec4& lookAtPos, const Vec4& up) {
// standard camera lookAt function
auto w = (pos - lookAtPos).normalize();
auto u = (Vec4::cross(up, w)).normalize();
auto v = Vec4::cross(w, u);
position = pos;
horizontalAxis = viewportWidth * u;
verticalAxis = viewportHeight * v;
imageOrigin = position - horizontalAxis/2 - verticalAxis/2 - w;
}
void Camera::setRotation(const PRECISION_TYPE yaw, const PRECISION_TYPE pitch, const PRECISION_TYPE roll) {
// TODO:
}
Vec4 Raycaster::raycast(const Ray& ray, int depth) {
if (depth > maxBounceDepth)
return {0,0,0};
auto hit = world.checkIfHit(ray, 0.001, infinity);
if (hit.first.hit) {
auto object = hit.second;
auto scatterResults = object->getMaterial()->scatter(ray, hit.first);
// if the material scatters the ray, ie casts a new one,
if (scatterResults.scattered) // attenuate the recursive raycast by the material's color
return scatterResults.attenuationColor * raycast(scatterResults.newRay, depth + 1);
//tlog << "Not scattered? " << object->getMaterial() << "\n";
return {0,0,0};
}
// skybox color
return {0.5, 0.7, 1.0};
}
void Raycaster::runSingle() {
executors.push_back(new std::thread([this]() -> void {
for (int i = 0; i < image.getWidth(); i++){
for (int j = 0; j < image.getHeight(); j++){
Raytracing::Vec4 color;
// TODO: profile for speed;
for (int s = 0; s < raysPerPixel; s++){
// simulate anti aliasing by generating rays with very slight random directions
color = color + raycast(camera.projectRay(i + rnd.getDouble(), j + rnd.getDouble()), 0);
}
PRECISION_TYPE sf = 1.0 / raysPerPixel;
// apply pixel color with gamma correction
image.setPixelColor(i, j, {std::sqrt(sf * color.r()), std::sqrt(sf * color.g()), std::sqrt(sf * color.b())});
}
}
finishedThreads++;
}));
}
void Raycaster::runMulti(unsigned int t) {
// calculate the max divisions we can have per side
// say we have 16 threads, making divs 4
// 4 divs per axis, two axis, 16 total quadrants
// matching the 16 threads.
if (t == 0)
t = system_threads;
auto divs = (double) int(std::log(t)/std::log(2));
// now double the divs, splitting each quadrant into 4 sub-quadrants which we can queue
// the reason to do this is that some of them will finish before others, and the now free threads can keep working
// do it without a queue like this leads to a single thread critical path and isn't optimally efficient.
divs *= 2; // 2 because two axis getting split makes 4 sub-quadrants
std::queue<std::function<void()>> unprocessedQuads;
for (int dx = 0; dx < divs; dx++){
for (int dy = 0; dy < divs; dy++){
unprocessedQuads.push([this, divs, dx, dy]() -> void {
for (int i = 0; i <= std::ceil(image.getWidth() / divs); i++){
for (int j = 0; j < std::ceil(image.getHeight() / divs); j++){
try {
int x = int(std::floor(image.getWidth() / divs) * dx) + i;
int y = int(std::floor(image.getHeight() / divs) * dy) + j;
Raytracing::Vec4 color;
// TODO: profile for speed;
for (int s = 0; s < raysPerPixel; s++) {
// simulate anti aliasing by generating rays with very slight random directions
color = color + raycast(camera.projectRay(x + rnd.getDouble(), y + rnd.getDouble()), 0);
}
PRECISION_TYPE sf = 1.0 / raysPerPixel;
// apply pixel color with gamma correction
image.setPixelColor(x, y, {std::sqrt(sf * color.r()), std::sqrt(sf * color.g()), std::sqrt(sf * color.b())});
} catch (std::exception& error){
flog << "Possibly fatal error in the multithreaded raytracer!\n";
flog << error.what() << "\n";
}
}
}
});
}
}
for (int i = 0; i < t; i++){
executors.push_back(new std::thread([this, unprocessedQuads, i]() -> void {
// run through all the quadrants
std::stringstream str;
str << "Threading of ";
str << i;
profiler profile(str.str());
int j = 0;
while (!unprocessedQuads.empty()){
std::stringstream st;
st << "Queue element #";
st << j;
profile.start(st.str());
std::function<void()> func;
// get the function for the quadrant
{
std::unique_lock<std::mutex> locked(queueSync);
func = unprocessedQuads.front();
}
// the run it
// which despite its size should take the longest here.
func();
profile.end(st.str());
j++;
}
profile.print();
finishedThreads++;
}));
}
}
}