
COSC 3P93 – Project Step 2

OZZIE GRAHAM - 6435275 and BRETT TERPSTRA - 6920201

1 TOPIC
Topic chosen was Triangle Mesh Rendering with depth support using Ray Tracing.

2 FOREWORD
Before we get started here with the write-up we’d like to say a few things about the
code/building the code. You will find lots of TODO comments throughout the code and
although with this submission we have met the minimum implementation requirements,
Project Step 3 will be upgraded with all these missing features, which we will talk about
here in the design section.

2.1 Building
CMake is the quintessential build system and is the closest thing C++ has to a standard.
As a result, we used CMake to make the building process much easier, since I use Ninja
locally to speed up the compile times, and makefiles for distribution. Any modern compiler
should be able to build it, however, I have only tested this on Linux with GCC 12. To Build
the project, please follow the instructions:

cd /your/path/to/the/sourceroot/
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make -j 16
./Step_2

3 DESIGN AND LOGIC
3.1 Libraries
Currently, the code uses one library which is included in the include folder. STB Image
write is a public domain single header single threaded image writing library that supports
.png, .jpg, .bmp, and .hdr. We make use of all of these functions, but the code makes use
of the PNG writing function by default. You can change the output format by providing
–output-format "png|jpg|bmp|hdr" to the command line arguments.

3.2 Vectors
Starting with the most basic part of any ray-tracing algorithm, the vector! We make use of
4D vectors, storing a x, y, z, w, with variable precision. You can change the precision by
changing the typedef in the vector class. We decided that 4D vectors are better because
they align better with SIMD instructions like AVX and with GPU compute libraries like
OpenCL. The vector class comes with two options. By default the engine will compile using
standard C++ doubles, in pseudocode:

Authors’ address: Ozzie Graham - 6435275; Brett Terpstra - 6920201.

Update date: 19 October 2022

:2 Ozzie Graham - 6435275 and Brett Terpstra - 6920201

class Vec4 {
[....]

double x, y, z, w;
[....]

};

However, you can uncomment the define at the top of the vector class to switch to AVX2
256bit vectors. AVX stands for Advanced Vector Extension and they allow us to compress
the four individual doubles into one large 256bit register. The CPU will then run batch run
a single instruction (say multiplication) over two of these compressed vectors returning the
vector result. The AVX version of the vector class would look something like:

class Vec4 {
[....]
// for conversion back to doubles which we can use with the ray
tracing engine
_union {

struct {
double _x, _y, _z, _w;

};
__m256d avxData;

};
[....]

};

This benefits us as we can speedup the sequential execution of our vector math by sending
the CPU one instruction to run on the vector instead of the multiple instructions in the
non-vectored Vec4 class suffers. Example:

// Using individual instructions
inline Vec4 operator*(const Vec4& left, const Vec4& right) {

// 4 whole multiplication instructions!
return {left.x() * right.x(), left.y() * right.y(), left.z() * right.
z(), left.w() * right.w()};

}

// vs the vectored version:
inline Vec4 operator*(const Vec4& left, const Vec4& right) {

// single instruction over multiple data! (SIMD)
__m256d multiplied = _mm256_mul_pd(left.avxData, right.avxData);
return Vec4::AVXToVector(multiplied);

}

3.3 Rays and the Ray Caster Algorithm
An image is provided to the ray caster class, which contain an width, height, and pixel color
data. Rays then are cast multiple times per pixel and averaged to create the final color
result. The color results are then written to the image and finally output to an image file.

Update date: 19 October 2022

COSC 3P93 – Project Step 2 :3

The pseudocode for this is as follows:
ALGORITHM 1: Image Ray casting

Data: image
1 for x in image.Width do
2 for y in image.Height do
3 pixelColor;
4 for s in maxRaysPerPixel do
5 pixelColor += raycast(cameraProjectRayFromScreenToWorld(x, y), 0);

6 pixelColor /= maxRaysPerPixel;
7 image.setColor(x,y, pixelColor);

The cameraProjectRayFromScreenToWorld transforms the x and y coord of the image
into a world position ray emanating from the camera. World coordinates are in left hand -Z
forward. The raycast function takes a ray and a depth value as it is a recursive function
returning the color vector. It uses the ray to check with the world if there is an object
that the ray intersects with. If it does it asks the object if and how it wants to scatter the
incoming ray. In pseudocode:
ALGORITHM 2: Ray casting function

Data: Ray, depth
Result: Color

1 if 𝑑𝑒𝑝𝑡ℎ > 𝑚𝑎𝑥𝑅𝑎𝑦𝐷𝑒𝑝𝑡ℎ then
2 return black;

3 if 𝑤𝑜𝑟𝑙𝑑.𝑟𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑐𝑡𝑠𝑂𝑏𝑗𝑒𝑐𝑡 then
4 if 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑒𝑑𝑂𝑏𝑗𝑒𝑐𝑡.𝑠𝑐𝑎𝑡𝑡𝑒𝑟 then
5 return intersectedObject.diffuseColour * raycast(scatteredRay, depth+1);

6 return black;

7 return skyboxColor;

This is effectively all it takes to implement a basic ray tracer. We support triangle ray
intersection via the Möller–Trumbore intersection algorithm. It is an algorithm that doesn’t
calculate the triangle plane, and as a result, is capable of fast intersection calculations. This
cannot be made parallel and must be done sequentially. We plan on making our own triangle
intersection algorithm, however, we have run out of time to derive one.

Additionally, the engine supports the dynamic loading of .obj type model files. Using
a custom model loader we are capable of loading any blender obj output and rendering it in
our scene. Obj loading can only be parallelized on a per-object level and since it is loaded
before the ray tracing algorithm runs, its run time is irrelevant.

3.4 Limitations
There are plenty of performance limitations with our setup. On the sequential side, every
single ray needs to be checked against every object in the scene. Every object may have
say 50 triangles meaning in a 1920x1080p image with a ray per pixel value of 50 and a
max depth of 50 and 3 objects with 50 triangles each, we’d have 5,184,000,000 rays total
possible rays being checked against 150 triangles. A total of 777,600,000,000 triangle ray
intersection checks, most of which will fail because the ray goes nowhere near the triangle!
Further elaboration on a solution to this problem is in the next subsection. On the parallel
side, splitting the image into N sub-quadrants where N is equal to the number of processors.

Update date: 19 October 2022

:4 Ozzie Graham - 6435275 and Brett Terpstra - 6920201

Running each sub-quadrant on its own processor could in theory provide an embarrassingly
parallel speedup since each quadrant isn’t dependent on the other.

3.5 Missing Features
There are a lot of missing features that were planned to be implemented (as extra features
are not required for the project) and have yet to be implemented. Due to life circumstances
and other class assignments we were unable to implement all of them. If this was all made
due at the end of the semester then I would’ve had it completed. Currently, the list of
missing features are:

A Graphical display of the image, with real-time updates on how far the CPU has rendered
the image. Step 3 will have a display for each thread and where it is running. Along with a
bunch of other stats that I might find useful. Plus a visualization of the BVH.

BVH - Bounding Volume Hierarchy. The code is fully in this submission. However, we
were running into issues with infinite recursion when trying to add objects. The use of a
BVH has the potential to solve the problem listed above since we can check if the ray will
intersect using a cheap AABB check. At each level of the tree, we reduce the problem size by
half, meaning it’s possible to go from checking 15 triangles to maybe 2. Plus rays that are
very obviously outside the bounding box will be rejected far before we reach the expensive
triangle intersection algorithm.

AVX - Advanced Vector Extension. The code for AVX is currently implemented, how-
ever, it doesn’t work. Outputs an incorrect image, unknown reason.

Various Algorithms - Wanted to implement various AABB, triangle intersection, and material
algorithms to graph and compare their performance.

Lights - Wanted to add lighting to the scene, it may come in the future.

3.6 Extending to the Parallel
Although we have already discussed our plans to make the ray tracer parallel, we will
reiterate. We can split the picture into segments each containing a specific and equal number
of pixels. A slave thread will be created for each block of the image. In theory, the more
blocks there are, the faster the program should run because there will be more threads. Each
slave thread will perform the same set of instructions but over a different set of data, a sort
of SIMD System. There will be a master thread that will then combine all the segments
which will create the final image. We can split the image down to each pixel gets its own
thread, but we are limited at from that point. We could make each ray have its own thread
but that would come with a lot of overhead, even if the bounces are handled by the same
processor.
Planning on implementing each segment of an image parallel rather than each thread creating
its own image would produce more of an animation and would be too computer resources
costly.

Update date: 19 October 2022

COSC 3P93 – Project Step 2 :5

4 EXAMPLE OUTPUT

Fig. 1. Rendered output of the code provided in this submission. You can see the reflective green mirror
in the background, with a red spider and his three homes. Ambient Occlusion occurs naturally as a result
of the diffuse material scattering using full unit spheres.

5 PERFORMANCE ANALYSIS
The larger the image, the more the ray bounces or the higher the max depth, the more time
it’ll take to complete the render.

5.1 Vectors
There are two simple methods that we can use to generate unit vectors, which are mostly
used in diffuse scattering. The first is to randomly generate vectors with x,y,z values in the
range [0, 1], rejecting them if the length is greater than 1. This is guaranteed to generate a
random vector inside the unit sphere.

Fig. 2. Where red arrows are rejected and green arrows are accepted and normalized.

Update date: 19 October 2022

:6 Ozzie Graham - 6435275 and Brett Terpstra - 6920201

The second method is to generate the random vector but instead of checking if it fits
within the unit sphere we just normalize it so it does. This is about 18% faster than using

Fig. 3. We normalize the first vector we generate (green) resulting in the blue arrow.

the rejection method, however, it produces results that are slightly less realistic. This is due
to the rays occurring more frequently near the corners of the square, resulting in fewer rays
in the cardinal directions.

5.2 Intersection Algorithms
The algorithms we use to check intersections are slightly better than a crude plane intersection
algorithm, however there are more complex algorithms that we might implement in the
future.

5.3 Bottlenecks
The potential bottleneck is having to check every single triangle everywhere which would
have to check the entire scene. This could be upwards of millions of rays which would cause
a performance decrease and the program wouldn’t be as efficient. We have already touched
on this with the BVH.

Update date: 19 October 2022

COSC 3P93 – Project Step 2 :7

REFERENCES
[1] Wikipedia contributors. Möller–Trumbore intersection algorithm, Wikipedia, The Free Encyclopedia, 23

Jul. 2022.
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

, Accessed October 19, 2022

Update date: 19 October 2022

	1 Topic
	2 Foreword
	2.1 Building

	3 Design and Logic
	3.1 Libraries
	3.2 Vectors
	3.3 Rays and the Ray Caster Algorithm
	3.4 Limitations
	3.5 Missing Features
	3.6 Extending to the Parallel

	4 Example Output
	5 Performance Analysis
	5.1 Vectors
	5.2 Intersection Algorithms
	5.3 Bottlenecks

	References

