/* * Created by Brett Terpstra 6920201 on 16/10/22. * Copyright (c) 2022 Brett Terpstra. All Rights Reserved. * * The general class for all things raytracing! */ #ifndef STEP_2_RAYTRACING_H #define STEP_2_RAYTRACING_H #include "engine/math/vectors.h" #include "engine/image/image.h" #include "engine/util/parser.h" #include "world.h" #include #include #include #include namespace Raytracing { class Camera { private: /* Image details */ const Image image; const PRECISION_TYPE aspectRatio; /* Camera details */ PRECISION_TYPE viewportHeight; PRECISION_TYPE viewportWidth; PRECISION_TYPE focalLength = 1.0; Vec4 position{0, 0, 0}; Vec4 horizontalAxis; Vec4 verticalAxis; Vec4 imageOrigin; public: Camera(PRECISION_TYPE fov, const Image& image): image(image), aspectRatio(double(image.getWidth()) / double(image.getHeight())) { // scale the viewport height based on the camera's FOV viewportHeight = (2.0 * tan(degreeeToRadian(fov) / 2)); // with must respect the aspect ratio of the image, otherwise we'd get funky results viewportWidth = (aspectRatio * viewportHeight); // horizontal direction from the camera. used to translate the camera horizontalAxis = (Vec4{viewportWidth, 0, 0, 0}); // virtual direction, also used to translate the camera verticalAxis = (Vec4{0, viewportHeight, 0, 0}); // lower left of the camera's view port. used to project our vectors from image space to world space imageOrigin = (position - horizontalAxis / 2 - verticalAxis / 2 - Vec4(0, 0, focalLength, 0)); tlog << viewportHeight << "\n"; tlog << viewportWidth << "\n"; tlog << "\n"; tlog << horizontalAxis << "\n"; tlog << verticalAxis << "\n"; tlog << imageOrigin << "\n"; } Ray projectRay(PRECISION_TYPE x, PRECISION_TYPE y); // makes the camera look at the lookatpos from the position p, with respects to the up direction up. (set to 0,1,0) void lookAt(const Vec4& pos, const Vec4& lookAtPos, const Vec4& up); void setPosition(const Vec4& pos) { this->position = pos; } void setRotation(PRECISION_TYPE yaw, PRECISION_TYPE pitch, PRECISION_TYPE roll); }; static Random rnd{-1, 1}; class Raycaster { private: const int maxBounceDepth = 50; // 50 seems to be the magic number for the point of diminishing returns // 100 looks like 50 but slightly clearer // 25 is noisy // 1 is VERY noisy. const int raysPerPixel = 50; Camera& camera; Image& image; World& world; std::vector executors; // is the raytracer still running? bool stillRunning = true; unsigned int finishedThreads = 0; unsigned int system_threads = std::thread::hardware_concurrency(); // yes this is actually the only sync we need between the threads // and compared to the actual runtime of the raytracing it's very small! std::mutex queueSync; std::queue>* unprocessedQuads = new std::queue>(); Vec4 raycast(const Ray& ray); public: inline static Vec4 randomUnitVector() { // there are two methods to generating a random unit sphere // one which is fast and approximate: auto v = Vec4(rnd.getDouble(), rnd.getDouble(), rnd.getDouble()); return v.normalize(); // and the one which generates an actual unit vector /*while (true) { auto v = Vec4(rnd.getDouble(), rnd.getDouble(), rnd.getDouble()); if (v.lengthSquared() >= 1) continue; return v; }*/ // the second creates better results but is 18% slower (better defined shadows) // likely due to not over generating unit vectors biased towards the corners } Raycaster(Camera& c, Image& i, World& world, const Parser& p): camera(c), image(i), world(world) { world.generateBVH(); } void runSingle(); void runMulti(unsigned int t); [[nodiscard]] inline bool areThreadsStillRunning() const {return finishedThreads == executors.size();} inline void join(){ for (auto* p : executors) p->join(); } ~Raycaster() { for (auto* p : executors){ // wait for all threads to exit before trying to delete them. try { if (p->joinable()) p->join(); } catch (std::exception& e){} delete(p); } delete(unprocessedQuads); } }; } #endif //STEP_2_RAYTRACING_H