/* * Created by Brett Terpstra 6920201 on 14/10/22. * Copyright (c) Brett Terpstra 2022 All Rights Reserved */ #ifndef STEP_2_VECTORS_H #define STEP_2_VECTORS_H // AVX512 isn't supported on my CPU. We will use AVX2 since it is supported by most modern CPUs // THIS IS CURRENTLY BROKEN. DO NOT USE. it's a great idea, but I've run out of time to debug this. Will be in step 3 #define USE_SIMD_CPU #ifdef USE_SIMD_CPU #include #endif #include #include "util/std.h" namespace Raytracing { // when running on the CPU it's fine to be a double // Your CPU may be faster with floats. // but if we move to the GPU it has to be a float. // since GPUs generally are far more optimized for floats // If using AVX or other SIMD instructions it should be double, only to fit into 256bits. // TODO would be to add support for 128bit AVX vectors. #ifdef USE_SIMD_CPU // don't change this. (working on a float version) typedef double PRECISION_TYPE; union AVXConvert { struct { double _x, _y, _z, _w; }; __m256d avxData; }; class Vec4 { private: // makes it easy to convert between AVX and double data types. union { struct { PRECISION_TYPE _x{}, _y{}, _z{}, _w{}; //PRECISION_TYPE _w, _z, _y, _x; }; __m256d avxData; }; // finally a use for friend! friend Vec4 operator+(const Vec4& left, const Vec4& right); friend Vec4 operator-(const Vec4& left, const Vec4& right); friend Vec4 operator*(const Vec4& left, const Vec4& right); friend Vec4 operator/(const Vec4& left, const Vec4& right); public: Vec4(): avxData(_mm256_setzero_pd()) {} Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z): avxData(_mm256_setr_pd(x, y, z, 0.0)) { //tlog << x << ":" << _x << " " << y << ":" << _y << " " << z << ":" << _z << "\n"; } Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z, PRECISION_TYPE w): avxData(_mm256_setr_pd(x, y, z, w)) { //dlog << x << ":" << _x << " " << y << ":" << _y << " " << z << ":" << _z << "\n"; } Vec4(const Vec4& vec): avxData(_mm256_setr_pd(vec.x(), vec.y(), vec.z(), vec.w())) { //ilog << vec.x() << ":" << _x << " " << vec.y() << ":" << _y << " " << vec.z() << ":" << _z << "\n"; } // most of the modern c++ here is because clang tidy was annoying me [[nodiscard]] inline PRECISION_TYPE x() const { return _x; } [[nodiscard]] inline PRECISION_TYPE y() const { return _y; } [[nodiscard]] inline PRECISION_TYPE z() const { return _z; } [[nodiscard]] inline PRECISION_TYPE w() const { return _w; } [[nodiscard]] inline PRECISION_TYPE r() const { return _x; } [[nodiscard]] inline PRECISION_TYPE g() const { return _y; } [[nodiscard]] inline PRECISION_TYPE b() const { return _z; } [[nodiscard]] inline PRECISION_TYPE a() const { return _w; } // negation operator Vec4 operator-() const { return {-x(), -y(), -z(), -w()}; } [[nodiscard]] inline PRECISION_TYPE magnitude() const { return sqrt(lengthSquared()); } [[nodiscard]] inline PRECISION_TYPE lengthSquared() const { return Vec4::dot(*this, *this); } // returns the unit-vector. [[nodiscard]] inline Vec4 normalize() const { PRECISION_TYPE mag = magnitude(); return {x() / mag, y() / mag, z() / mag, w() / mag}; } // add operator before the vec returns the magnitude PRECISION_TYPE operator+() const { return magnitude(); } // preforms the dot product of left * right static inline PRECISION_TYPE dot(const Vec4& left, const Vec4& right) { // multiply the elements of the vectors __m256d mul = _mm256_mul_pd(left.avxData, right.avxData); // horizontal add. element 0 and 2 (or 1 and 3) contain the results which we must scalar add. __m256d sum = _mm256_hadd_pd(mul, mul); AVXConvert conv {}; conv.avxData = sum; // boom! dot product. much easier than cross return conv._x + conv._y; } // preforms the cross product of left X right // since a general solution to the cross product doesn't exist in 4d // we are going to ignore the w. static inline Vec4 cross(const Vec4& left, const Vec4& right) { // shuffle left values for alignment with the cross algorithm // (read the shuffle selector from right to left) takes the y and places it in the first element of the resultant vector // takes the z and places it in the second element of the vector // takes the x element and places it in the 3rd element of the vector // and then the w element in the last element of the vector // creating the alignment {left.y(), left.z(), left.x(), left.w()} (as seen in the cross algorithm __m256d leftLeftShuffle = _mm256_permute4x64_pd(left.avxData, _MM_SHUFFLE(3,0,2,1)); // same thing but produces {right.z(), right.x(), right.y(), right.w()} __m256d rightLeftShuffle = _mm256_permute4x64_pd(right.avxData, _MM_SHUFFLE(3,1,0,2)); // now we have to do the right side multiplications // {left.z(), left.x(), left.y(), left.w()} __m256d leftRightShuffle = _mm256_permute4x64_pd(left.avxData, _MM_SHUFFLE(3,1,0,2)); // {right.y(), right.z(), right.x(), right.w()} __m256d rightRightShuffle = _mm256_permute4x64_pd(right.avxData, _MM_SHUFFLE(3,0,2,1)); // multiply to do the first step of the cross process __m256d multiLeft = _mm256_mul_pd(leftLeftShuffle, rightLeftShuffle); // multiply the right sides of the subtraction sign __m256d multiRight = _mm256_mul_pd(leftRightShuffle, rightRightShuffle); // then subtract to produce the cross product __m256d subs = _mm256_sub_pd(multiLeft, multiRight); // yes this looks a lot more complicated, but it should be faster! AVXConvert conv {}; conv.avxData = subs; /*auto b = Vec4{left.y() * right.z() - left.z() * right.y(), left.z() * right.x() - left.x() * right.z(), left.x() * right.y() - left.y() * right.x()}; tlog << b._x << " " << b._y << " " << b._z << "\n"; tlog << conv._x << " " << conv._y << " " << conv._z << "\n\n";*/ return {conv._x, conv._y, conv._z, conv._w}; } }; // adds the two vectors left and right inline Vec4 operator+(const Vec4& left, const Vec4& right) { __m256d added = _mm256_add_pd(left.avxData, right.avxData); AVXConvert conv {}; conv.avxData = added; return {conv._x, conv._y, conv._z, conv._w}; } // subtracts the right vector from the left. inline Vec4 operator-(const Vec4& left, const Vec4& right) { __m256d subbed = _mm256_sub_pd(left.avxData, right.avxData); AVXConvert conv {}; conv.avxData = subbed; return {conv._x, conv._y, conv._z, conv._w}; } // multiples the left with the right inline Vec4 operator*(const Vec4& left, const Vec4& right) { __m256d multiplied = _mm256_mul_pd(left.avxData, right.avxData); AVXConvert conv {}; conv.avxData = multiplied; return {conv._x, conv._y, conv._z, conv._w}; } // divides each element individually inline Vec4 operator/(const Vec4& left, const Vec4& right) { __m256d dived = _mm256_div_pd(left.avxData, right.avxData); AVXConvert conv {}; conv.avxData = dived; return {conv._x, conv._y, conv._z, conv._w}; } #else // change this if you want typedef double PRECISION_TYPE; class Vec4 { private: union xType { PRECISION_TYPE x; PRECISION_TYPE r; }; union yType { PRECISION_TYPE y; PRECISION_TYPE g; }; union zType { PRECISION_TYPE z; PRECISION_TYPE b; }; union wType { PRECISION_TYPE w; PRECISION_TYPE a; }; struct valueType { xType v1; yType v2; zType v3; wType v4; }; // isn't much of a reason to do it this way // it's unlikely that we'll need to use the w component // but it helps better line up with the GPU and other SIMD type instructions, like what's above. valueType value; public: Vec4(): value{0, 0, 0, 0} {} Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z): value{x, y, z, 0} {} Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z, PRECISION_TYPE w): value{x, y, z, w} {} Vec4(const Vec4& vec): value{vec.x(), vec.y(), vec.z(), vec.w()} {} // most of the modern c++ here is because clang tidy was annoying me [[nodiscard]] inline PRECISION_TYPE x() const { return value.v1.x; } [[nodiscard]] inline PRECISION_TYPE y() const { return value.v2.y; } [[nodiscard]] inline PRECISION_TYPE z() const { return value.v3.z; } [[nodiscard]] inline PRECISION_TYPE w() const { return value.v4.w; } [[nodiscard]] inline PRECISION_TYPE r() const { return value.v1.r; } [[nodiscard]] inline PRECISION_TYPE g() const { return value.v2.g; } [[nodiscard]] inline PRECISION_TYPE b() const { return value.v3.b; } [[nodiscard]] inline PRECISION_TYPE a() const { return value.v4.a; } // negation operator Vec4 operator-() const { return {-x(), -y(), -z(), -w()}; } [[nodiscard]] inline PRECISION_TYPE magnitude() const { return sqrt(lengthSquared()); } [[nodiscard]] inline PRECISION_TYPE lengthSquared() const { return x() * x() + y() * y() + z() * z() + w() * w(); } // returns the unit-vector. [[nodiscard]] inline Vec4 normalize() const { PRECISION_TYPE mag = magnitude(); return {x() / mag, y() / mag, z() / mag, w() / mag}; } // add operator before the vec returns the magnitude PRECISION_TYPE operator+() const { return magnitude(); } // preforms the dot product of left * right static inline PRECISION_TYPE dot(const Vec4& left, const Vec4& right) { return left.x() * right.x() + left.y() * right.y() + left.z() * right.z(); } // preforms the cross product of left X right // since a general solution to the cross product doesn't exist in 4d // we are going to ignore the w. static inline Vec4 cross(const Vec4& left, const Vec4& right) { return {left.y() * right.z() - left.z() * right.y(), left.z() * right.x() - left.x() * right.z(), left.x() * right.y() - left.y() * right.x()}; } }; // Utility Functions // adds the two vectors left and right inline Vec4 operator+(const Vec4& left, const Vec4& right) { return {left.x() + right.x(), left.y() + right.y(), left.z() + right.z(), left.w() + right.w()}; } // subtracts the right vector from the left. inline Vec4 operator-(const Vec4& left, const Vec4& right) { return {left.x() - right.x(), left.y() - right.y(), left.z() - right.z(), left.w() - right.w()}; } // multiples the left with the right inline Vec4 operator*(const Vec4& left, const Vec4& right) { return {left.x() * right.x(), left.y() * right.y(), left.z() * right.z(), left.w() * right.w()}; } // divides each element individually inline Vec4 operator/(const Vec4& left, const Vec4& right) { return {left.x() / right.x(), left.y() / right.y(), left.z() / right.z(), left.w() / right.w()}; } #endif // none of these can be vectorized with AVX instructions // useful for printing out the vector to stdout inline std::ostream& operator<<(std::ostream& out, const Vec4& v) { return out << "Vec4{" << v.x() << ", " << v.y() << ", " << v.z() << ", " << v.w() << "} "; } // multiplies the const c with each element in the vector v inline Vec4 operator*(const PRECISION_TYPE c, const Vec4& v) { return {c * v.x(), c * v.y(), c * v.z(), c * v.w()}; } // same as above but for right sided constants inline Vec4 operator*(const Vec4& v, PRECISION_TYPE c) { return c * v; } // divides the vector by the constant c inline Vec4 operator/(const Vec4& v, PRECISION_TYPE c) { return {v.x() / c, v.y() / c, v.z() / c, v.w() / c}; } // divides each element in the vector by over the constant inline Vec4 operator/(PRECISION_TYPE c, const Vec4& v) { return {c / v.x(), c / v.y(), c / v.z(), c / v.w()}; } class Ray { private: // the starting point for our ray Vec4 start; // and the direction it is currently traveling Vec4 direction; Vec4 inverseDirection; public: Ray(const Vec4& start, const Vec4& direction): start(start), direction(direction), inverseDirection(1 / direction) {} [[nodiscard]] Vec4 getStartingPoint() const { return start; } [[nodiscard]] Vec4 getDirection() const { return direction; } // not always needed, but it's good to not have to calculate the inverse inside the intersection // as that would be very every AABB, and that is expensive [[nodiscard]] Vec4 getInverseDirection() const { return inverseDirection; } // returns a point along the ray, extended away from start by the length. [[nodiscard]] inline Vec4 along(PRECISION_TYPE length) const { return start + length * direction; } }; inline std::ostream& operator<<(std::ostream& out, const Ray& v) { return out << "Ray{" << v.getStartingPoint() << " " << v.getDirection() << "} "; } } #endif //STEP_2_VECTORS_H