/* * Created by Brett Terpstra 6920201 on 16/10/22. * Copyright (c) 2022 Brett Terpstra. All Rights Reserved. * * The general class for all things raytracing! */ #ifndef STEP_2_RAYTRACING_H #define STEP_2_RAYTRACING_H #include "engine/math/vectors.h" #include "engine/image/image.h" #include "engine/util/parser.h" #include "world.h" #include #include #include #include namespace Raytracing { class Camera { private: /* Image details */ const Image image; const PRECISION_TYPE aspectRatio; /* Camera details */ PRECISION_TYPE viewportHeight; PRECISION_TYPE viewportWidth; PRECISION_TYPE focalLength = 1.0; const PRECISION_TYPE NEAR_PLANE = 0.1; const PRECISION_TYPE FAR_PLANE = 500; PRECISION_TYPE tanFovHalf; PRECISION_TYPE frustumLength; Vec4 position{0, 0, 0}; Vec4 horizontalAxis; Vec4 verticalAxis; Vec4 imageOrigin; Vec4 up {0, 1, 0}; public: Camera(PRECISION_TYPE fov, const Image& image): image(image), aspectRatio(double(image.getWidth()) / double(image.getHeight())) { // scale the viewport height based on the camera's FOV tanFovHalf = tan(degreeeToRadian(fov) / 2); viewportHeight = (2.0 * tanFovHalf); // with must respect the aspect ratio of the image, otherwise we'd get funky results viewportWidth = (aspectRatio * viewportHeight); frustumLength = FAR_PLANE - NEAR_PLANE; // horizontal direction from the camera. used to translate the camera horizontalAxis = (Vec4{viewportWidth, 0, 0, 0}); // virtual direction, also used to translate the camera verticalAxis = (Vec4{0, viewportHeight, 0, 0}); // lower left of the camera's view port. used to project our vectors from image space to world space imageOrigin = (position - horizontalAxis / 2 - verticalAxis / 2 - Vec4(0, 0, focalLength, 0)); tlog << viewportHeight << "\n"; tlog << viewportWidth << "\n"; tlog << "\n"; tlog << horizontalAxis << "\n"; tlog << verticalAxis << "\n"; tlog << imageOrigin << "\n"; } Ray projectRay(PRECISION_TYPE x, PRECISION_TYPE y); void setPosition(const Vec4& pos) { this->position = pos; } void setRotation(PRECISION_TYPE yaw, PRECISION_TYPE pitch, PRECISION_TYPE roll); // the follow utility functions are actually taking forever to get right // I can't tell if my projection calculation is off or the view calc? // got to install GLM to test which function works and which does. Maybe they are both bad. or Maybe it's my matrix impl // or maybe the whole rendering stack sucks [[nodiscard]] Mat4x4 project() const { Mat4x4 project {emptyMatrix}; // this should be all it takes to create a mostly correct projection matrix project.m00(float(1.0 / (aspectRatio * tanFovHalf))); project.m11(float(1.0 / tanFovHalf)); project.m22(float(-((FAR_PLANE + NEAR_PLANE) / frustumLength))); // this has been transposed project.m32(-1); project.m23(float(-((2 * NEAR_PLANE * FAR_PLANE) / frustumLength))); //project.m33(0); return project; // use GLM to debug issues with ^ //glm::mat4 projectG = glm::perspective(glm::radians(90.0f), (float)aspectRatio, 0.1f, (float)1000); //return Mat4x4{projectG}; } Mat4x4 view(const Vec4& lookAtPos){ Mat4x4 view; auto w = (position - lookAtPos).normalize(); // forward auto u = (Vec4::cross(up, w)).normalize(); // right auto v = Vec4::cross(w, u); // up view.m00(float(w.x())); view.m01(float(w.y())); view.m02(float(w.z())); view.m03(float(w.w())); view.m10(float(u.x())); view.m11(float(u.y())); view.m12(float(u.z())); view.m13(float(u.w())); view.m20(float(v.x())); view.m21(float(v.y())); view.m22(float(v.z())); view.m23(float(v.w())); // view matrix are inverted, dot product to simulate translate matrix multiplication view.m30(-float(Vec4::dot(u, position))); view.m31(-float(Vec4::dot(v, position))); view.m32(-float(Vec4::dot(w, position))); view.m33(1); return view; } Mat4x4 view(PRECISION_TYPE yaw, PRECISION_TYPE pitch) { Mat4x4 view; pitch = degreeeToRadian(pitch); yaw = degreeeToRadian(yaw); PRECISION_TYPE cosPitch = std::cos(pitch); PRECISION_TYPE cosYaw = std::cos(yaw); PRECISION_TYPE sinPitch = std::sin(pitch); PRECISION_TYPE sinYaw = std::sin(yaw); auto x = Vec4{cosYaw, 0, -sinYaw}; // forward auto y = Vec4{sinYaw * sinPitch, cosPitch, cosYaw * sinPitch}; // right auto z = Vec4{sinYaw * cosPitch, -sinPitch, cosPitch * cosYaw}; // up view.m00(float(x.x())); view.m01(float(x.y())); view.m02(float(x.z())); view.m03(float(x.w())); view.m10(float(y.x())); view.m11(float(y.y())); view.m12(float(y.z())); view.m13(float(y.w())); view.m20(float(z.x())); view.m21(float(z.y())); view.m22(float(z.z())); view.m23(float(z.w())); // view matrix are inverted, dot product to simulate translate matrix multiplication view.m30(-float(Vec4::dot(x, position))); view.m31(-float(Vec4::dot(y, position))); view.m32(-float(Vec4::dot(z, position))); view.m33(1); return view.transpose(); } [[nodiscard]] inline Vec4 getPosition() const {return position;}; // the camera's position must be set with setPosition(Vec4); // uses an internal up vector, assumed to be {0, 1, 0} // will make the camera look at provided position with respects to the current camera position. void lookAt(const Vec4& lookAtPos); }; static Random rnd{-1, 1}; class Raycaster { private: int maxBounceDepth = 50; int raysPerPixel = 50; Camera& camera; Image& image; World& world; std::vector> executors {}; // is the raytracer still running? bool stillRunning = true; unsigned int finishedThreads = 0; unsigned int system_threads = std::thread::hardware_concurrency(); // yes this is actually the only sync we need between the threads // and compared to the actual runtime of the raytracing it's very small! std::mutex queueSync; std::queue>* unprocessedQuads = nullptr; Vec4 raycast(const Ray& ray); public: inline void updateRayInfo(int maxBounce, int perPixel){ raysPerPixel = perPixel; maxBounceDepth = maxBounce; } inline void resetRayInfo(){ raysPerPixel = 50; maxBounceDepth = 50; } inline static Vec4 randomUnitVector() { // there are two methods to generating a random unit sphere // one which is fast and approximate: auto v = Vec4(rnd.getDouble(), rnd.getDouble(), rnd.getDouble()); return v.normalize(); // and the one which generates an actual unit vector /*while (true) { auto v = Vec4(rnd.getDouble(), rnd.getDouble(), rnd.getDouble()); if (v.lengthSquared() >= 1) continue; return v; }*/ // the second creates better results but is 18% slower (better defined shadows) // likely due to not over generating unit vectors biased towards the corners } Raycaster(Camera& c, Image& i, World& world, const Parser& p): camera(c), image(i), world(world) { world.generateBVH(); } void runSingle(); void runMulti(unsigned int t); [[nodiscard]] inline bool areThreadsStillRunning() const {return finishedThreads == executors.size();} inline void join(){ for (auto& p : executors) p->join(); } void deleteThreads(){ for (auto& p : executors){ // wait for all threads to exit before trying to delete them. try { if (p->joinable()) p->join(); } catch (std::exception& e){} } // since executors contains the only reference to the unique_ptr it will be deleted automatically executors.clear(); } ~Raycaster() { deleteThreads(); delete(unprocessedQuads); } }; } #endif //STEP_2_RAYTRACING_H