/* * Created by Brett Terpstra 6920201 on 16/10/22. * Copyright (c) 2022 Brett Terpstra. All Rights Reserved. */ #include namespace Raytracing { World::~World() { for (auto* p : objects) delete(p); } Object::HitData SphereObject::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const { PRECISION_TYPE radiusSquared = radius * radius; // move the ray to be with respects to the sphere vec4 RayWRTSphere = ray.getStartingPoint() - position; // now determine the discriminant for the quadratic formula for the function of line sphere intercept PRECISION_TYPE a = ray.getDirection().lengthSquared(); PRECISION_TYPE b = Raytracing::vec4::dot(RayWRTSphere, ray.getDirection()); PRECISION_TYPE c = RayWRTSphere.lengthSquared() - radiusSquared; // > 0: the hit has two roots, meaning we hit both sides of the sphere // = 0: the ray has one root, we hit the edge of the sphere // < 0: ray isn't inside the sphere. PRECISION_TYPE discriminant = b * b - (a * c); // < 0: ray isn't inside the sphere. Don't need to bother calculating the roots. if (discriminant < 0) return {false, vec4(), vec4(), 0}; // now we have to find the root which exists inside our range [min,max] auto root = (-b - std::sqrt(discriminant)) / a; // if the first root isn't in our range if (root < min || root > max) { // check the second root root = (-b + std::sqrt(discriminant)) / a; if (root < min || root > max) { // if the second isn't in the range then we also must return false. return {false, vec4(), vec4(), 0}; } } // the hit point is where the ray is when extended to the root auto RayAtRoot = ray.along(root); // The normal of a sphere is just the point of the hit minus the center position auto normal = (RayAtRoot - position).normalize(); /*if (Raytracing::vec4::dot(ray.getDirection(), normal) > 0.0) { tlog << "ray inside sphere\n"; } else tlog << "ray outside sphere\n"; */ return {true, RayAtRoot, normal, root}; } Object::HitData World::checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const { auto hResult = Object::HitData{false, vec4(), vec4(), max}; for (auto* obj : objects){ // check up to the point of the last closest hit, // will give the closest object's hit result auto cResult = obj->checkIfHit(ray, min, hResult.length); if (cResult.hit) hResult = cResult; } return hResult; } }