/* * Created by Brett Terpstra 6920201 on 14/10/22. * Copyright (c) Brett Terpstra 2022 All Rights Reserved */ #ifndef STEP_2_VECTORS_H #define STEP_2_VECTORS_H #include #include "util/std.h" namespace Raytracing { // when running on the CPU it's fine to be a double // if your CPU is older (32bit) and has issues with doubles, consider changing it to a float // but if we move to the GPU it has to be a float. // since GPUs generally are far more optimized for floats typedef double PRECISION_TYPE; class vec4 { private: union xType {PRECISION_TYPE x; PRECISION_TYPE r; }; union yType {PRECISION_TYPE y; PRECISION_TYPE g; }; union zType {PRECISION_TYPE z; PRECISION_TYPE b; }; union wType {PRECISION_TYPE w; PRECISION_TYPE a; }; struct valueType {xType v1; yType v2; zType v3; wType v4;}; public: // isn't much of a reason to do it this way // beyond I wanted an explicit immutable vector type of length 4 // that could be used as both x,y,z + w? and rgba // it's unlikely that we'll need to use the w component // but it helps better line up with the GPU // and floating point units (especially on GPUs) tend to be aligned to 4*sizeof(float) const valueType value; vec4(): value{0,0,0,0} {} vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z): value{x,y,z,0} {} vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z, PRECISION_TYPE w): value{x,y,z,w} {} vec4(const vec4& vec): value{vec.x(), vec.y(), vec.z(), vec.w()} {} vec4 operator=(const vec4& other) { return {other.x(), other.y(), other.z(), other.w()}; } // I remember reading somewhere that if you can make it constant you should (Helps with -o flags?) // I'm still a little new to C++. TODO: compare compiler output // this is my second major project in it (the first being my java game engine i ported to c++) // since value is constant it's unlikely we actually need to const inline PRECISION_TYPE x() const {return value.v1.x;} const inline PRECISION_TYPE y() const {return value.v2.y;} const inline PRECISION_TYPE z() const {return value.v3.z;} const inline PRECISION_TYPE w() const {return value.v4.w;} const inline PRECISION_TYPE r() const {return value.v1.r;} const inline PRECISION_TYPE g() const {return value.v2.g;} const inline PRECISION_TYPE b() const {return value.v3.b;} const inline PRECISION_TYPE a() const {return value.v4.a;} // negation operator const vec4 operator-() const { return vec4(-x(), -y(), -z(), -w()); } const inline PRECISION_TYPE magnitude() const { return sqrt(length_squared()); } const inline PRECISION_TYPE length_squared() const { return x() * x() + y() * y() + z() * z() + w() * w(); } // returns the unit-vector. const inline vec4 normalize(){ PRECISION_TYPE mag = magnitude(); return vec4(x() / mag, y() / mag, z() / mag, w() / mag); } // add operator before the vec returns the magnitude PRECISION_TYPE operator+() const { return magnitude(); } // preforms the dot product of left * right static inline const PRECISION_TYPE dot(const vec4& left, const vec4& right) { return left.x() * right.x() + left.y() * right.y() + left.z() * right.z() + left.w() * right.w(); } // preforms the cross product of left X right // since a general solution to the cross product doesn't exist in 4d // we are going to ignore the w. static inline const vec4 cross(const vec4& left, const vec4& right) { return vec4(left.y() * right.z() - left.z() * right.y(), left.z() * right.x() - left.x() * right.z(), left.x() * right.y() - left.y() * right.x()); } }; // Utility Functions // useful for printing out the vector to stdout inline std::ostream& operator<<(std::ostream& out, const vec4& v) { return out << "vec4{" << v.x() << ", " << v.y() << ", " << v.z() << ", " << v.w() << "} "; } // adds the two vectors left and right inline const vec4 operator+(const vec4& left, const vec4& right) { return vec4(left.x() + right.x(), left.y() + right.y(), left.z() + right.z(), left.w() + right.w()); } // subtracts the right vector from the left. inline const vec4 operator-(const vec4& left, const vec4& right) { return vec4(left.x() - right.x(), left.y() - right.y(), left.z() - right.z(), left.w() - right.w()); } // multiples the left with the right inline const vec4 operator*(const vec4& left, const vec4& right) { return vec4(left.x() * right.x(), left.y() * right.y(), left.z() * right.z(), left.w() * right.w()); } // multiplies the const c with each element in the vector v inline const vec4 operator*(const PRECISION_TYPE c, const vec4& v) { return vec4(c * v.x(), c * v.y(), c * v.z(), c * v.w()); } // same as above but for right sided constants inline const vec4 operator*(const vec4& v, PRECISION_TYPE c) { return c * v; } // divides the vector by the constant c inline const vec4 operator/(const vec4& v, PRECISION_TYPE c) { return vec4(v.x() / c, v.y() / c, v.z() / c, v.w() / c); } // divides the constant by the magnitude of the vector inline const PRECISION_TYPE operator/(PRECISION_TYPE c, const vec4& v) { return c / +v; } } #endif //STEP_2_VECTORS_H