COSC-3P93-Project/Step 2/include/math/vectors.h

218 lines
8.4 KiB
C++

/*
* Created by Brett Terpstra 6920201 on 14/10/22.
* Copyright (c) Brett Terpstra 2022 All Rights Reserved
*/
#ifndef STEP_2_VECTORS_H
#define STEP_2_VECTORS_H
// this is a big TODO: add AVX2 instructions to vector class, AVX512 isn't supported on my CPU.
#define USE_SIMD_CPU
#ifdef USE_SIMD_CPU
#include <immintrin.h>
#endif
#include <cmath>
#include "util/std.h"
namespace Raytracing {
// when running on the CPU it's fine to be a double
// Your CPU may be faster with floats.
// but if we move to the GPU it has to be a float.
// since GPUs generally are far more optimized for floats
// If using AVX or other SIMD instructions it should be double, only to fit into 256bits.
#ifdef USE_SIMD_CPU
// don't change this.
typedef double PRECISION_TYPE;
class Vec4 {
private:
__m128 VectorValues;
public:
Vec4(): VectorValues{_mm256_set_pd(0.0, 0.0, 0.0, 0.0)} {}
Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z): VectorValues{x, y, z, 0} {}
Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z, PRECISION_TYPE w): VectorValues{x, y, z, w} {}
Vec4(const Vec4& vec): VectorValues{vec.x(), vec.y(), vec.z(), vec.w()} {}
}
#elif
// change this if you want
typedef double PRECISION_TYPE;
class Vec4 {
private:
union xType {
PRECISION_TYPE x;
PRECISION_TYPE r;
};
union yType {
PRECISION_TYPE y;
PRECISION_TYPE g;
};
union zType {
PRECISION_TYPE z;
PRECISION_TYPE b;
};
union wType {
PRECISION_TYPE w;
PRECISION_TYPE a;
};
struct valueType {
xType v1;
yType v2;
zType v3;
wType v4;
};
// isn't much of a reason to do it this way
// beyond I wanted an explicit immutable vector type of length 4
// that could be used as both x,y,z + w? and rgba
// it's unlikely that we'll need to use the w component
// but it helps better line up with the GPU
// and floating point units (especially on GPUs) tend to be aligned to 4*sizeof(float)
valueType value;
public:
Vec4(): value{0, 0, 0, 0} {}
Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z): value{x, y, z, 0} {}
Vec4(PRECISION_TYPE x, PRECISION_TYPE y, PRECISION_TYPE z, PRECISION_TYPE w): value{x, y, z, w} {}
Vec4(const Vec4& vec): value{vec.x(), vec.y(), vec.z(), vec.w()} {}
// most of the modern c++ here is because clang tidy was annoying me
[[nodiscard]] inline PRECISION_TYPE x() const { return value.v1.x; }
[[nodiscard]] inline PRECISION_TYPE y() const { return value.v2.y; }
[[nodiscard]] inline PRECISION_TYPE z() const { return value.v3.z; }
[[nodiscard]] inline PRECISION_TYPE w() const { return value.v4.w; }
[[nodiscard]] inline PRECISION_TYPE r() const { return value.v1.r; }
[[nodiscard]] inline PRECISION_TYPE g() const { return value.v2.g; }
[[nodiscard]] inline PRECISION_TYPE b() const { return value.v3.b; }
[[nodiscard]] inline PRECISION_TYPE a() const { return value.v4.a; }
// negation operator
Vec4 operator-() const { return {-x(), -y(), -z(), -w()}; }
[[nodiscard]] inline PRECISION_TYPE magnitude() const {
return sqrt(lengthSquared());
}
[[nodiscard]] inline PRECISION_TYPE lengthSquared() const {
return x() * x() + y() * y() + z() * z() + w() * w();
}
// returns the unit-vector.
[[nodiscard]] inline Vec4 normalize() const {
PRECISION_TYPE mag = magnitude();
return {x() / mag, y() / mag, z() / mag, w() / mag};
}
// add operator before the vec returns the magnitude
PRECISION_TYPE operator+() const {
return magnitude();
}
// preforms the dot product of left * right
static inline PRECISION_TYPE dot(const Vec4& left, const Vec4& right) {
return left.x() * right.x()
+ left.y() * right.y()
+ left.z() * right.z();
}
// preforms the cross product of left X right
// since a general solution to the cross product doesn't exist in 4d
// we are going to ignore the w.
static inline Vec4 cross(const Vec4& left, const Vec4& right) {
return {left.y() * right.z() - left.z() * right.y(),
left.z() * right.x() - left.x() * right.z(),
left.x() * right.y() - left.y() * right.x()};
}
};
// Utility Functions
// useful for printing out the vector to stdout
inline std::ostream& operator<<(std::ostream& out, const Vec4& v) {
return out << "Vec4{" << v.x() << ", " << v.y() << ", " << v.z() << ", " << v.w() << "} ";
}
// adds the two vectors left and right
inline Vec4 operator+(const Vec4& left, const Vec4& right) {
return {left.x() + right.x(), left.y() + right.y(), left.z() + right.z(), left.w() + right.w()};
}
// subtracts the right vector from the left.
inline Vec4 operator-(const Vec4& left, const Vec4& right) {
return {left.x() - right.x(), left.y() - right.y(), left.z() - right.z(), left.w() - right.w()};
}
// multiples the left with the right
inline Vec4 operator*(const Vec4& left, const Vec4& right) {
return {left.x() * right.x(), left.y() * right.y(), left.z() * right.z(), left.w() * right.w()};
}
// divides each element individually
inline Vec4 operator/(const Vec4& left, const Vec4& right) {
return {left.x() / right.x(), left.y() / right.y(), left.z() / right.z(), left.w() / right.w()};
}
// multiplies the const c with each element in the vector v
inline Vec4 operator*(const PRECISION_TYPE c, const Vec4& v) {
return {c * v.x(), c * v.y(), c * v.z(), c * v.w()};
}
// same as above but for right sided constants
inline Vec4 operator*(const Vec4& v, PRECISION_TYPE c) {
return c * v;
}
// divides the vector by the constant c
inline Vec4 operator/(const Vec4& v, PRECISION_TYPE c) {
return {v.x() / c, v.y() / c, v.z() / c, v.w() / c};
}
// divides each element in the vector by over the constant
inline Vec4 operator/(PRECISION_TYPE c, const Vec4& v) {
return {c / v.x(), c / v.y(), c / v.z(), c / v.w()};
}
#endif
class Ray {
private:
// the starting point for our ray
Vec4 start;
// and the direction it is currently traveling
Vec4 direction;
Vec4 inverseDirection;
public:
Ray(const Vec4& start, const Vec4& direction): start(start), direction(direction), inverseDirection(1 / direction) {}
[[nodiscard]] Vec4 getStartingPoint() const { return start; }
[[nodiscard]] Vec4 getDirection() const { return direction; }
// not always needed, but it's good to not have to calculate the inverse inside the intersection
// as that would be very every AABB, and that is expensive
[[nodiscard]] Vec4 getInverseDirection() const {return inverseDirection; }
// returns a point along the ray, extended away from start by the length.
[[nodiscard]] inline Vec4 along(PRECISION_TYPE length) const { return start + length * direction; }
};
inline std::ostream& operator<<(std::ostream& out, const Ray& v) {
return out << "Ray{" << v.getStartingPoint() << " " << v.getDirection() << "} ";
}
}
#endif //STEP_2_VECTORS_H