COSC-3P93-Project/Step 2/include/world.h

64 lines
2.0 KiB
C++

/*
* Created by Brett Terpstra 6920201 on 16/10/22.
* Copyright (c) 2022 Brett Terpstra. All Rights Reserved.
*/
#ifndef STEP_2_WORLD_H
#define STEP_2_WORLD_H
#include <util/std.h>
#include <math/vectors.h>
namespace Raytracing {
class Object {
public:
struct HitData {
// all the other values only matter if this is true
bool hit{false};
// the hit point on the object
vec4 hitPoint{};
// the normal of that hit point
vec4 normal{};
// the length of the vector from its origin in its direction.
PRECISION_TYPE length{0};
};
// return true if the ray intersects with this object, only between min and max
[[nodiscard]] virtual HitData checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const = 0;
virtual ~Object() = default;
};
class SphereObject : public Object {
private:
vec4 position;
PRECISION_TYPE radius;
public:
SphereObject(const vec4& position, PRECISION_TYPE radius): position(position), radius(radius) {}
[[nodiscard]] virtual HitData checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const;
};
class World {
private:
// store all the objects in the world,
std::vector<Object*> objects;
/*TODO: create a kd-tree or bvh version to store the objects
* this way we can easily tell if a ray is near and object or not
* saving on computation
*/
public:
World() = default;
World(const World& world) = delete;
World(const World&& world) = delete;
inline void add(Object* object) { objects.push_back(object); }
[[nodiscard]] virtual Object::HitData checkIfHit(const Ray& ray, PRECISION_TYPE min, PRECISION_TYPE max) const;
~World();
};
}
#endif //STEP_2_WORLD_H