COSC-3P98-Assigment-3/include/particle_system.h

311 lines
11 KiB
C
Raw Normal View History

/*
* Created by Brett on 30/03/23.
* Licensed under GNU General Public License V3.0
* See LICENSE file for license detail
*/
#ifndef ASSIGN3_PARTICLE_SYSTEM_H
#define ASSIGN3_PARTICLE_SYSTEM_H
#include <texture.h>
#include <unordered_map>
#include <blt/std/random.h>
#include <vector>
#include <queue>
#include <algorithm>
#include <util.h>
#include <sstream>
#include <config.h>
struct particle_t {
vec pos, dir;
float speed;
float age;
};
class particle_system {
private:
std::unordered_map<unsigned int, std::vector<particle_t*>> particles;
blt::vec3 position;
blt::vec3 direction;
float spread;
int pps;
// current number of particles spawned in the last second
int current_pps = 0;
// delta to keep track of pps relative to the framerate
double delta = 0;
enum status_t {
CONTINUOUS = 0, MANUAL = 1, SINGLE = 2
};
enum spray_status_t {
DEFAULT = 0, LOW = 1, HIGH = 2
};
status_t status = CONTINUOUS;
spray_status_t sprayMode = DEFAULT;
const float sprays[3] = {1, 5, 10};
bool applyFriction = true;
bool randomizeTexture = false;
blt::random<float> DIRECTION_RANDOMIZER{-1, 1};
blt::random<float> TEXTURE_RANDOMIZER{0, 9};
void spawnParticle() {
auto* p = new particle_t;
constexpr float SPEED_FACTOR = 25;
unsigned int textureID = 0;
if (randomizeTexture)
textureID = (int) round(TEXTURE_RANDOMIZER.get());
p->pos = conv(position);
auto offset = blt::vec3{DIRECTION_RANDOMIZER.get(), 0, DIRECTION_RANDOMIZER.get()};
p->dir = conv(direction * SPEED_FACTOR + offset.normalize() * spread * sprays[sprayMode]);
p->speed = 1.0;
p->age = 0;
particles[textureID].push_back(p);
}
inline static double distance(const particle_t* p, const blt::vec3& pos){
const auto ppos = p->pos;
auto dx = ppos.x - pos.x();
auto dy = ppos.y - pos.y();
auto dz = ppos.z - pos.z();
return dx * dx + dy * dy + dz * dz;
}
// vbo stuff
// if I had access to GL3.3+ I could instance the particles which would be much faster to render
// it wouldn't be hard as BLT has most of the math functions required and I could steal the
// shader loader / VAO object implementation from my final project but that's a TODO:
// the hard part is glut's apparent lack of gl3+ support
// -- apparently needed glad for this, maybe it is possible without switching to glfw
unsigned int quad = 0;
const float s = 0.5;
const float PARTICLE_LIFETIME = 25;
public:
particle_system(
const blt::vec3& position, const blt::vec3& direction, float spread, int pps
): position(position), direction(direction), spread(spread), pps(pps) {
quad = glGenLists(1);
glNewList(quad, GL_COMPILE);
glBegin(GL_QUADS);
glTexCoord2f(1, 0);
glVertex3f(-s, s, 0);
glTexCoord2f(1, 1);
glVertex3f(-s, -s, 0);
glTexCoord2f(0, 1);
glVertex3f(s, -s, 0);
glTexCoord2f(0, 0);
glVertex3f(s, s, 0);
glEnd();
glEndList();
}
void update(camera& cam, float bnx, float bnz, float bpx, float bpz) {
// used to keep updates correct without being dependent on FPS
auto frameDeltaSeconds = ((double) getDelta() / 1000000000.0);
const auto gravity_vec = vec{0, -GRAVITY, 0};
for (auto& pair : particles) {
std::queue<particle_t*> deleteList;
for (auto& particle : pair.second) {
auto ppos = particle->pos;
particle->pos = ppos + particle->dir * particle->speed * frameDeltaSeconds;
particle->age += (float) frameDeltaSeconds;
float BOUNCE_FACTOR = 0.75;
// bounce particle
if (particle->pos.y < 0 && particle->pos.x > bnx && particle->pos.x < bpx &&
particle->pos.z > bnz && particle->pos.z < bpz) {
// NOTE: I am not deleting stationary particles because I think they look cool sitting on the floor.
if (!applyFriction)
BOUNCE_FACTOR = 1.0;
particle->dir.y = -particle->dir.y * BOUNCE_FACTOR;
particle->pos = ppos;
}
// remove particles outside the bounds of the world
if (particle->pos.y < -50 || particle->age > PARTICLE_LIFETIME) {
deleteList.push(particle);
continue;
}
particle->dir = particle->dir + gravity_vec * frameDeltaSeconds;
}
while (!deleteList.empty()) {
auto*& particle = deleteList.front();
auto itr = std::find(pair.second.begin(), pair.second.end(), particle);
if (itr != pair.second.end())
pair.second.erase(itr);
delete (particle);
deleteList.pop();
}
}
int particlesToSpawn = (int) (round(pps * frameDeltaSeconds));
if (current_pps + particlesToSpawn > pps)
particlesToSpawn = pps - current_pps;
if (status == CONTINUOUS) {
for (int i = 0; i < particlesToSpawn; i++)
spawnParticle();
} else if (status == MANUAL) {
if (cam.isKeyPressed('f'))
for (int i = 0; i < particlesToSpawn; i++)
spawnParticle();
}
delta += frameDeltaSeconds;
if (delta > 1.0) {
current_pps = 0;
delta = 0;
}
}
inline static void applyBillboard() {
GLfloat m[16];
glMatrixMode(GL_MODELVIEW);
glGetFloatv(GL_MODELVIEW_MATRIX, m);
// undo all rotations (and scaling!) by setting rotation part to the identity matrix
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i == j)
m[i * 4 + j] = 1.0;
else
m[i * 4 + j] = 0.0;
}
}
glLoadMatrixf(m);
}
void render(camera& cam, texture** textures) {
glMatrixMode(GL_MODELVIEW);
// by batching particles by texture we save a little driver overhead
for (auto& pair : particles) {
//glBindTexture(GL_TEXTURE_2D, );
textures[pair.first]->bind();
auto& particles_vec = pair.second;
// since we have enabled transparency, we need to sort the particles based on the distance to the camera.
// TODO: this does not account for bill-boarding / rotation!
// TODO: std::sort is likely a quick-sort derivative, insertion sort would be better as particles are always* mostly* sorted!
std::sort(particles_vec.begin(), particles_vec.end(), [&](const particle_t* p1, const particle_t* p2) {
auto d1 = distance(p1, cam.getPosition());
auto d2 = distance(p2, cam.getPosition());
return d1 > d2;
});
for (auto& p : particles_vec) {
glPushMatrix();
glTranslatef(p->pos.x, p->pos.y, p->pos.z);
// due to the inefficiency of getting the modelview and updating it to billboard,
// this will cause a considerable slow down.
applyBillboard();
glCallList(quad);
glPopMatrix();
}
}
auto err = glGetError();
if (err != 0)
std::cout << "GL Error: " << err << "\n";
{
std::stringstream str;
str << WINDOW_TITLE;
str << " | Particles: ";
size_t count = 0;
for (const auto& pair : particles)
count += pair.second.size();
str << count;
str << " FPS: ";
str << 1000000000.0 / (double)getDelta();
str << " | Status: ";
str << (status == CONTINUOUS ? "Continuous" : status == MANUAL ? "Manual" : "Single");
str << " | Friction: ";
str << (applyFriction ? "True" : "False");
str << " | Spray: ";
str << (sprayMode == DEFAULT ? "Default" : sprayMode == LOW ? "Low" : "High");
str << " | Randomize: ";
str << (randomizeTexture ? "True" : "False");
glutSetWindowTitle(str.str().c_str());
}
}
void randomizeSpeed(float n) {
blt::random<float> SPEED_RANDOMIZER{1, n};
for (auto& pair : particles)
for (auto& p : pair.second)
p->speed = SPEED_RANDOMIZER.get();
}
void setFriction(bool f){
applyFriction = f;
}
[[nodiscard]] bool getFriction() const {
return applyFriction;
}
void toggleSpray(){
int currentSpray = sprayMode;
// increment and bound the spray pattern
currentSpray++;
if (currentSpray > 2)
currentSpray = 0;
sprayMode = static_cast<spray_status_t>(currentSpray);
}
void toggleTexRandomizer() {
randomizeTexture = !randomizeTexture;
}
void changeFiringMode(int mode){
// wrap
if (mode < 0)
mode = SINGLE;
if (mode > 2)
mode = CONTINUOUS;
// convert
status = static_cast<status_t>(mode);
}
int getFiringMode(){
return status;
}
void singleFire(){
BLT_TRACE("Hello!");
if (status == SINGLE)
spawnParticle();
}
void reset(){
particles.clear();
}
~particle_system() {
glDeleteLists(quad, 1);
for (const auto& pair : particles) {
for (auto& particle : pair.second)
delete (particle);
}
}
};
#endif //ASSIGN3_PARTICLE_SYSTEM_H