COSC 3P98 Assignment 3

Brett Terpstra - 6920201 - bt19ex@brocku.ca

April 4, 2023




Abstract

Particle systems are the cornerstone of all modern game engines as they allow
effects such as smoke which are otherwise impossible with static meshes. Ergo
a good particle system should be flexible while maintaining stable performance.
This document serves as an informal report on the design and implementaion
of two particle systems; a basic but flexible engine and a high performance
extendable "modern” GPU powered particle system.



Table Of Contents

1 Introduction

1.1 Description . . . . . . . . e
1.1.1 Extra Features . . . . ... ... ... ... ........
1.1.2  Missing Features . . . . ... .. ... ... ... ...
1.2 Building . . . . . .. oo
1.2.1 Caveats . . . . . . . . . ..o
1.2.2 Build Commands . . . . . ... ... ... . ........
1.3 Usage . . . o v o i e e

2 Performance Mode
2.0.1 Design . . . . ... L

W W wNoNNDNON

15



Introduction

1.1 Description

Over the course of working on this assignment I began to wonder how far I
could push my hardware and chapter 2 ” Performance Mode” will go furher into
this. As for the main assignment requirements, they are met simply by running
the CMake project. On my hardware the simple particle fountain can reach 30k
particles and features sorted transparency.

1.1.1 Extra Features
e Ordered Alpha Blending
e "Spray” Mode (12)
e Textured Particles/Plane/Cube (16)
e Particles with Different Textures (18)

e Extra Feature - ”Performance Mode” (23)

1.1.2 Missing Features

Random spin mode was left out intentionally for two reasons. One, I specifically
designed the particle strucutre to fit in 32 bytes, half the width of a cache line.
Two, the potential marks was not worth disturbing the particle data structure
and further altering the particle system. There is likely little benefit to ensuring
the particles fit nicely inside a cache line as most of the CPU time is spent on
OpenGL API calls. See chapter 2 ”Performance Mode” for more information.

1.2 Building

As of writing this report, I have yet to build and test on Windows. The Visual
Studio project will build without issues, however, since this assignment was
primarily designed and tested on Debain 12 ” Bookworm” (Linux 6.1.0-6-amd64)
using AMD /Intel hardware (Mesa 22.3.6), I reccomend using CMake.



1.2.1 Caveats

The assignment makes use of a non-standard OpenGL extention during tex-
ture loading. "GL_.TEXTURE_MAX_ANISOTROPY_EXT” should work on all
modern Intel/AMD /Nvidia hardware, if it doesn’t work on your hardware con-
sider removing the line from texture.h and high_perf.cpp

1.2.2 Build Commands

mkdir build && cd build

cmake —DCMAKE BUILD_ TYPE=Release ../
make —j 16

./ assign3

Figure 1.1: Linux build commands.

1.3 Usage

Keybindings and usage instructions are printed at program startup.



Performance Mode

2.0.1 Design

The high performance mode is the result of a weekend hack-a-ton where I wanted
to see how easy it would be to implement a million particle+ renderer. The
rendering engine itself can handle around 20 million particles at about 60fps
(Figure 2.1).



Figure 2.1: 20 million particles distributed in a 50x25x50 cube with load moni-
tors



	Introduction
	Description
	Extra Features
	Missing Features

	Building
	Caveats
	Build Commands

	Usage

	Performance Mode
	Design


