
COSC 3P98 Assignment 3

Brett Terpstra - 6920201 - bt19ex@brocku.ca

April 6, 2023

Abstract

Particle systems are the cornerstone of all modern game engines as they allow
effects such as smoke which are otherwise impossible with static meshes. Ergo
a good particle system should be flexible while maintaining stable performance.
This document serves as an informal report on the design and implementaion
of two particle systems; a basic but flexible engine and a high performance
extendable ”modern” GPU powered particle system.

Table Of Contents

1 Introduction 2
1.1 Description . 2

1.1.1 Extra Features . 2
1.1.2 Missing Features . 2

1.2 Building . 2
1.2.1 Caveats . 3
1.2.2 Build Commands . 3

1.3 Usage . 3

2 Performance Mode 4
2.1 Design . 4
2.2 Renderer . 4

2.2.1 Rendering Pipeline . 5
2.3 Compute Shader . 5
2.4 Usage . 6

2.4.1 Building . 6
2.4.2 Running . 6

2.5 Future Plans . 6
2.5.1 Lists . 6
2.5.2 Bitonic Sort . 6
2.5.3 Tiling . 7
2.5.4 Hierarchical Depth Buffers 7

2.6 Figures . 8

1

Introduction

1.1 Description

Over the course of working on this assignment I began to wonder how far I
could push my hardware and chapter 2 ”Performance Mode” will go furher into
this. As for the main assignment requirements, they are met simply by running
the CMake project. On my hardware the simple particle fountain can reach 30k
particles and features sorted transparency.

1.1.1 Extra Features

� Ordered Alpha Blending

� ”Spray” Mode (12)

� Textured Particles/Plane/Cube (16)

� Particles with Different Textures (18)

� Extra Feature - ”Performance Mode” (23)

1.1.2 Missing Features

Random spin mode was left out intentionally for two reasons. One, I specifically
designed the particle strucutre to fit in 32 bytes, half the width of a cache line.
Two, the potential marks was not worth disturbing the particle data structure
and further altering the particle system. There is likely little benefit to ensuring
the particles fit nicely inside a cache line as most of the CPU time is spent on
OpenGL API calls. See chapter 2 ”Performance Mode” for more information.

1.2 Building

As of writing this report, I have yet to build and test on Windows. The Visual
Studio project will build without issues, however, since this assignment was
primarily designed and tested on Debain 12 ”Bookworm” (Linux 6.1.0-6-amd64)
using AMD/Intel hardware (Mesa 22.3.6), I reccomend using CMake.

2

1.2.1 Caveats

The assignment makes use of a non-standard OpenGL extention during tex-
ture loading. ”GL TEXTURE MAX ANISOTROPY EXT” should work on all
modern Intel/AMD/Nvidia hardware, if it doesn’t work on your hardware con-
sider removing the line from texture.h and high perf.cpp

1.2.2 Build Commands

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=Release ../

make -j 16

./assign3

Figure 1.1: Linux build commands.

1.3 Usage

Keybindings and usage instructions are printed at program startup.

3

Performance Mode

2.1 Design

The high performance mode is the result of a weekend hack-a-ton where I
wanted to see how easy it would be to implement a million particle+ renderer.
If I had more time I would encapsulate the high perf.cpp file into the parti-
cle system class, allowing for multiple *and customizable* particle systems. If
you wish to change settings, most are constants in shaders/physics.comp or
high perf/high perf.cpp. The rendering engine itself can handle around 20 mil-
lion particles at about 60fps (Figure 2.2). With phyiscs enabled, the engine
can handle about 6 million particles (Figure 2.4) but as Figure 2.5 shows, the
renderer is clearly fillrate limited. Solutions to increase the number of rendered
particles are discussed in section 2.5. It should be noted that (Figure 2.2) used a
previous renderer which made use of a instanced ”GL TRIANGLES” approach
and did not have textures or billboarding. The new renderer (Figure 2.3) makes
use of ”GL POINTS” with a geometry shader to generate the vertices and fea-
tures billboarding/texturing. A compute shader is used before rendering to
update the particle positions and directions on the GPU. This way there is no
need to copy the data to and from the graphics card.

2.2 Renderer

The legacy OpenGL renderer uses display lists to speedup rendering of the
particles. Although this method is faster than using the same draw commands
inline, it is highly limited by driver overhead. Modern GPUs are deisgned to
process massive amounts of data all at once and benfit from reducing the amount
of synchronization between the GPU and CPU. As mentioned earlier the current
renderer uses an vertex buffer object to store all particle positions and directions
in one giant array. It then uses those points to render all particles in a single
draw call, thereby reducing driver overhead.

4

2.2.1 Rendering Pipeline

Vertex Shader

The vertex shader is purely used to passthough the particle position to the
geometry shader. Since the vertex shader does not have the ability to output
multiple vertices (not easily at least), we have to use a geometry shader.

Geometry Shader

The geometry shader uses the up and right vectors from the inverse view matrix
to generate a quad facing the camera. It takes in the particle position and
outputs a triangle strip. This is a highly efficent opperation as according to
AMD there is dedicated hardware to handle this particular geometry shader
case[4, p. 9].

Fragment Shader

The fragment shader is run once per pixel and is responsible for texturing the
particles. I use a texture array as it can be bound once before rendering, there-
fore particles do not need to be sperated by texture. Using an array has the
downside of every texture needs to be the same size, to solve this I resize the
texture as it is loaded. Unforunately this will lead to some textures being dis-
torted but the performance gain is worth it. The modern renderer is constrained
by the lack of ’advanced’ programming techniques, some of which are discussed
in section 2.5.

2.3 Compute Shader

Compute shaders are very useful for embaressingly parallel tasks like updating
particles. The compute shader is a very simple (nearly 1:1) translation of the
CPU version of the particle system’s update function. It handles ’dead’ particles
by reseting them to the inital position / direction. As a result particles are
intialized with a random lifetime between 0 and the max lifetime to ensure even
distribution. If you change the particle lifetime, please modify both constants!

Direction Offseting

Because generating random numbers on the GPU is hard (there is no dedicated
hardware random number generator), I generate a random set of offsets at
startup and upload these randoms to the GPU. The particle index is then used to
access this buffer when the particle is reset; the result is a convincing distribution
of particles. The large the number of particles the larger the offset buffer should
be. Up to 6 million 8192 should be fine. If things look off consider increasing
the value to some larger power of two. Make sure you update both constants
here as well!

5

2.4 Usage

2.4.1 Building

Add ”-DEXTRAS=ON” to the CMake command.

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=Release -DEXTRAS=ON ../

make -j 16

./assign3

Figure 2.1: Linux build commands.

2.4.2 Running

All particles exist from the begining, which means all particles start at the inital
position and slowly spread out. After starting the program but before moving
around, you should press ’p’ to allow the compute shader to run, once the
particles spread out it is safe to move. The slow performance of all the particles
in the same spot has to do with overdraw accessing and writing the same location
of the depth texture (hard to do in parallel). Fillrate is a common issue with
this particle renderer. See the future plans section for possible resolutions.

2.5 Future Plans

Unfortunately because this is exam season, I do not have time to do anything
more with this assignment. Furthermore I do not think the effort I’ve put in
so far will be reflected in the value of the mark and any further improvements
would be a waste. Below is a list of features I began looking into but as I have no
experience with, they would require far too much experimentation and research
to implement myself in a reasonable amount of time. As it is it took a weekend
to implement something I was already somewhat familar with.

2.5.1 Lists

I would like to make it so all particles are not rendered all the time. Basically
add a dead / alive particles list. This would prevent the issue of all particles
starting in the same place, the low performance that causes and would be helpful
in sorting.

2.5.2 Bitonic Sort

Professor Robson spent a good deal of time on this algorithmn in the parallel
computing class and most of the literature online suggest using this, including

6

the famous GDC talk on optimized particle systems[5]. The next step in imple-
menting a good GPU accelerated particle system is bitonic sorting, however as
I got further into the algorithmn it became clear that if I wanted to implement
it myself, properly understanding the algorthmn would take too much time.

2.5.3 Tiling

Very similar to the rendering technique known as clustering, basically by divid-
ing the view frustum into small sections and sorting / culling particles within
we can reduce rendering load. This is an algothmn I’ve always wanted to imple-
ment, but lack a solid understanding of. The GDC talk goes further into this
and many online resources talk about light clustering[5]. Again, if I had more
time I would’ve learned it for this assignment as I think that would have been
really cool.

2.5.4 Hierarchical Depth Buffers

The idea is that by generating mipmaps of the depth buffer we can do broad
phase culling of particles, thereby reducing the number of fine grained (per
pixel) accesses to the depth buffer. This is a micro-optimization as stated by
Mike Turitzin, but ”every ms counts”[6].

2.5.5 Lighting

Since tiling particles comes from Forward+ rendering, it would make sense to
implement a forward+ renderer.

7

2.6 Figures

Figure 2.2: 20 million particles distributed in a 50x25x50 cube with load moni-
tors

8

Figure 2.3: 20 million particles on the new renderer

9

Figure 2.4: 6.4 million particles, fillrate (not compute) limited.

10

Figure 2.5: 6.4 million particles, zoomed out, showing fillrate as the limiting
factor in speed.

11

Bibliography

[1] Mike Bailey. OpenGL Compute Shaders. "https://web.engr.

oregonstate.edu/~mjb/cs519/Handouts/compute.shader.2pp.pdf",
2021.

[2] Krnonos Group. OpenGL Reference Manual. "https://registry.

khronos.org/OpenGL-Refpages/gl4/", 2014.

[3] JeGX. Particle Billboarding with the Geome-
try Shader. "https://www.geeks3d.com/20140815/

particle-billboarding-with-the-geometry-shader-glsl/", 2014.

[4] Emil Persson. ATI Radeon HD 2000 programming guide. "https:

//web.archive.org/web/20160722164341/http://amd-dev.wpengine.

netdna-cdn.com/wordpress/media/2012/10/ATI_Radeon_HD_2000_

programming_guide.pdf", 2007.

[5] Gareth Thomas. Compute-Based GPU Particle Systems. "https://

ubm-twvideo01.s3.amazonaws.com/o1/vault/GDC2014/Presentations/

Gareth_Thomas_Compute-based_GPU_Particle.pdf", 2014.

[6] Mike Turitzin. Hierarchical Depth Buffers. "https://miketuritzin.com/
post/hierarchical-depth-buffers/", 2020.

12

"https://web.engr.oregonstate.edu/~mjb/cs519/Handouts/compute.shader.2pp.pdf"
"https://web.engr.oregonstate.edu/~mjb/cs519/Handouts/compute.shader.2pp.pdf"
"https://registry.khronos.org/OpenGL-Refpages/gl4/"
"https://registry.khronos.org/OpenGL-Refpages/gl4/"
"https://www.geeks3d.com/20140815/particle-billboarding-with-the-geometry-shader-glsl/"
"https://www.geeks3d.com/20140815/particle-billboarding-with-the-geometry-shader-glsl/"
"https://web.archive.org/web/20160722164341/http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ATI_Radeon_HD_2000_programming_guide.pdf"
"https://web.archive.org/web/20160722164341/http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ATI_Radeon_HD_2000_programming_guide.pdf"
"https://web.archive.org/web/20160722164341/http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ATI_Radeon_HD_2000_programming_guide.pdf"
"https://web.archive.org/web/20160722164341/http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/ATI_Radeon_HD_2000_programming_guide.pdf"
"https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GDC2014/Presentations/Gareth_Thomas_Compute-based_GPU_Particle.pdf"
"https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GDC2014/Presentations/Gareth_Thomas_Compute-based_GPU_Particle.pdf"
"https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GDC2014/Presentations/Gareth_Thomas_Compute-based_GPU_Particle.pdf"
"https://miketuritzin.com/post/hierarchical-depth-buffers/"
"https://miketuritzin.com/post/hierarchical-depth-buffers/"

	Introduction
	Description
	Extra Features
	Missing Features

	Building
	Caveats
	Build Commands

	Usage

	Performance Mode
	Design
	Renderer
	Rendering Pipeline

	Compute Shader
	Usage
	Building
	Running

	Future Plans
	Lists
	Bitonic Sort
	Tiling
	Hierarchical Depth Buffers

	Figures

