/* * Created by Brett on 11/02/23. * Licensed under GNU General Public License V3.0 * See LICENSE file for license detail */ #ifndef FINALPROJECT_WORLD_H #define FINALPROJECT_WORLD_H #include #include #include namespace fp { namespace _static { /** * Converts from world coord to chunk-internal coords * @param coord world space coordinate * @return chunk internal coord */ static inline int world_to_internal(int coord) { auto val = coord % CHUNK_SIZE; return val < 0 ? CHUNK_SIZE + val : val; } static inline block_pos world_to_internal(const block_pos& coord) { return {world_to_internal(coord.x), world_to_internal(coord.y), world_to_internal(coord.z)}; } /** * Converts from world coord to chunk pos coords * * consider: (int) (-31 / 32) which equals 0 * but a negative chunk would be stored at -1, not 0 (since that is taken by the positive coord chunk) * an arithmetic right shift would produce the desired -1 (see Java, which performs a signed right bit shift) * however in C++ shifting on a signed type is undefined behaviour. So we must emulate an arithmetic right shift. * * @param coord x,y, or z coordinate to convert * @return a right arithmetic bit shift resulting in a signed division of the coordinate by CHUNK_SIZE */ static inline int world_to_chunk(int coord) { auto ucoord = (unsigned int) coord; ucoord >>= CHUNK_SHIFT; if (coord < 0) { // the mask only has to be generated once since it is never modified at runtime beyond assignment static unsigned int mask = 0; if (mask == 0) { for (int i = 0; i < CHUNK_SHIFT; i++) mask |= (1 << ((sizeof(int) * 8 - 1) - i)); } ucoord |= mask; } return (int) (ucoord); } static inline chunk_pos world_to_chunk(const block_pos& pos) { return {world_to_chunk(pos.x), world_to_chunk(pos.y), world_to_chunk(pos.z)}; } } struct chunk { public: block_storage* storage; mesh_storage* mesh = nullptr; VAO* chunk_vao; chunk_pos pos; chunk_mesh_status dirtiness = OKAY; chunk_update_status status = NONE; unsigned long render_size = 0; public: explicit chunk(chunk_pos pos): pos(pos) { storage = new block_storage(); chunk_vao = new VAO(); // using indices uses: // 12 faces * 4 vertex * 3 float * 4 bytes + 12 faces * 6 indices * 4 bytes = 864 bytes for vertex + index // using only vertices: // 12 faces * 6 vertex * 3 floats * 4 bytes = 864 bytes. // since they both use the same amount of memory we will only store the vertices and draw with drawArrays, since it is less complex. // set up the VBOs which will be later updated when the mesh is generated. auto vbo = new VBO(ARRAY_BUFFER, nullptr, 0); auto data_size = 3 * sizeof(float) + 2 * sizeof(float); chunk_vao->bindVBO(vbo, 0, 3, GL_FLOAT, (int)data_size, 0); chunk_vao->bindVBO(vbo, 1, 2, GL_FLOAT, (int)data_size, 3 * sizeof(float), true); chunk_vao->bindElementVBO(new VBO(ELEMENT_BUFFER, nullptr, 0)); } ~chunk() { delete storage; delete chunk_vao; delete mesh; } }; struct chunk_neighbours { fp::chunk* neighbours[6]; inline chunk*& operator[](int i) { return neighbours[i]; } }; class world { private: std::unordered_map chunk_storage; protected: static void generateFullMesh(mesh_storage* mesh, chunk* chunk); void generateEdgeMesh(mesh_storage* mesh, chunk* chunk); void generateChunkMesh(chunk* chunk); inline void getNeighbours(const chunk_pos& pos, chunk_neighbours& neighbours) { neighbours[X_POS] = getChunk(chunk_pos{pos.x + 1, pos.y, pos.z}); neighbours[X_NEG] = getChunk(chunk_pos{pos.x - 1, pos.y, pos.z}); neighbours[Y_POS] = getChunk(chunk_pos{pos.x, pos.y + 1, pos.z}); neighbours[Y_NEG] = getChunk(chunk_pos{pos.x, pos.y - 1, pos.z}); neighbours[Z_POS] = getChunk(chunk_pos{pos.x, pos.y, pos.z + 1}); neighbours[Z_NEG] = getChunk(chunk_pos{pos.x, pos.y, pos.z - 1}); } inline void insertChunk(chunk* chunk) { chunk_storage.insert({chunk->pos, chunk}); chunk_neighbours chunkNeighbours{}; getNeighbours(chunk->pos, chunkNeighbours); for (auto* p : chunkNeighbours.neighbours){ if (p) p->status = NEIGHBOUR_CREATE; } } inline chunk* getChunk(const chunk_pos& pos){ const auto map_pos = chunk_storage.find(pos); if (map_pos == chunk_storage.end()) return nullptr; return map_pos->second; } inline chunk* getChunk(const block_pos& pos) { return chunk_storage.at(_static::world_to_chunk(pos)); } public: world() { insertChunk(new chunk({0, 0, 0})); insertChunk(new chunk({0, 1, 0})); insertChunk(new chunk({0, -1, 0})); insertChunk(new chunk({1, 0, 0})); insertChunk(new chunk({0, 0, 1})); insertChunk(new chunk({-1, 0, 0})); insertChunk(new chunk({0, 0, -1})); insertChunk(new chunk({-1, 0, -1})); } void update(); void render(fp::shader& shader); inline bool setBlock(const block_pos& pos, block_type blockID) { auto c = getChunk(pos); if (!c) return false; // mark the chunk for a mesh update c->dirtiness = FULL_MESH; c->storage->set(_static::world_to_internal(pos), blockID); return true; } inline block_type getBlock(const block_pos& pos) { auto c = getChunk(pos); if (!c) return fp::registry::AIR; return c->storage->get(_static::world_to_internal(pos)); } ~world() { for (auto& chunk : chunk_storage) delete (chunk.second); } }; } #endif //FINALPROJECT_WORLD_H