COSC-4P80-Assignment-1/src/main.cpp

131 lines
3.8 KiB
C++

#include <iostream>
#include <blt/math/matrix.h>
#include <blt/math/log_util.h>
#include "blt/std/assert.h"
#include <blt/format/boxing.h>
void test_math()
{
blt::generalized_matrix<float, 1, 4> input{1, -1, -1, 1};
blt::generalized_matrix<float, 1, 3> output{1, 1, 1};
blt::generalized_matrix<float, 4, 3> expected{
blt::vec4{1, -1, -1, 1},
blt::vec4{1, -1, -1, 1},
blt::vec4{1, -1, -1, 1}
};
auto w_matrix = input.transpose() * output;
BLT_ASSERT(w_matrix == expected && "MATH FAILURE");
}
constexpr blt::u32 num_values = 4;
constexpr blt::u32 input_count = 5;
constexpr blt::u32 output_count = 4;
using input_t = blt::generalized_matrix<float, 1, input_count>;
using output_t = blt::generalized_matrix<float, 1, output_count>;
using crosstalk_t = blt::generalized_matrix<float, output_count, num_values>;
float crosstalk(const input_t& i, const input_t& j)
{
return i * j.transpose();
}
input_t input_1{-1, 1, 1, 1, -1};
input_t input_2{-1, -1, -1, -1, 1};
input_t input_3{-1, -1, -1, 1, 1};
input_t input_4{1, 1, 1, 1, 1};
output_t output_1{1, 1, -1, 1};
output_t output_2{1, -1, -1, -1};
output_t output_3{-1, -1, 1, 1};
output_t output_4{-1, 1, 1, -1};
auto weight_1 = input_1.transpose() * output_1;
auto weight_2 = input_2.transpose() * output_2;
auto weight_3 = input_3.transpose() * output_3;
auto weight_4 = input_4.transpose() * output_4;
auto inputs = std::array{input_1, input_2, input_3, input_4};
auto outputs = std::array{output_1, output_2, output_3, output_4};
auto weights = std::array{weight_1, weight_2, weight_3, weight_4};
auto weight_total_a = weight_1 + weight_2 + weight_3;
auto weight_total_c = weight_total_a + weight_4;
crosstalk_t crosstalk_values{};
template<typename T, blt::u32 rows, blt::u32 columns>
blt::generalized_matrix<T, rows, columns> normalize(const blt::generalized_matrix<T, rows, columns>& in)
{
blt::generalized_matrix<T, rows, columns> result;
for (blt::u32 i = 0; i < columns; i++)
{
for (blt::u32 j = 0; j < rows; j++)
result[i][j] = in[i][j] >= 0 ? 1 : -1;
}
return result;
}
void test_recall(blt::size_t index)
{
auto& input = inputs[index];
auto& output = outputs[index];
auto& associated_weights = weights[index];
auto output_recall = normalize(input * associated_weights);
auto input_recall = normalize(output * associated_weights.transpose());
if (output_recall != output)
{
BLT_ERROR_STREAM << "Output recalled failed!" << "\n";
BLT_ERROR_STREAM << "Expected: " << output << "\n";
BLT_ERROR_STREAM << "Found: " << output_recall << "\n";
} else
BLT_INFO("Output %ld recall passed!", index + 1);
if (input_recall != input)
{
BLT_ERROR_STREAM << "Input recalled failed!" << "\n";
BLT_ERROR_STREAM << "Expected: " << input << "\n";
BLT_ERROR_STREAM << "Found: " << input_recall << "\n";
} else
BLT_INFO("Input %ld recall passed!", index + 1);
}
void part_a()
{
blt::log_box_t box(BLT_INFO_STREAM, "Part A", 8);
test_recall(0);
test_recall(1);
test_recall(2);
}
void part_b()
{
blt::log_box_t box(BLT_INFO_STREAM, "Part B", 8);
for (blt::u32 i = 0; i < num_values; i++)
{
blt::generalized_matrix<float, 1, output_count> accum;
for (blt::u32 k = 0; k < num_values; k++)
{
if (i == k)
continue;
accum += (outputs[k] * crosstalk(inputs[k].normalize(), inputs[i].normalize()));
}
crosstalk_values.assign_to_column_from_column_rows(accum, i);
}
for (blt::u32 i = 0; i < num_values; i++)
{
BLT_INFO_STREAM << crosstalk_values[i] << " Mag: " << crosstalk_values[i].magnitude() << "\n";
}
}
int main()
{
test_math();
part_a();
part_b();
}