COSC-4P80-Assignment-2/lib/eigen-3.4.0/test/geo_transformations.cpp

732 lines
26 KiB
C++
Raw Permalink Normal View History

2024-10-21 16:42:03 -04:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
template<typename T>
Matrix<T,2,1> angleToVec(T a)
{
return Matrix<T,2,1>(std::cos(a), std::sin(a));
}
// This permits to workaround a bug in clang/llvm code generation.
template<typename T>
EIGEN_DONT_INLINE
void dont_over_optimize(T& x) { volatile typename T::Scalar tmp = x(0); x(0) = tmp; }
template<typename Scalar, int Mode, int Options> void non_projective_only()
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp
*/
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisx;
typedef Transform<Scalar,3,Mode,Options> Transform3;
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
typedef Translation<Scalar,3> Translation3;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random();
Transform3 t0, t1, t2;
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
Quaternionx q1, q2;
q1 = AngleAxisx(a, v0.normalized());
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;
t0.scale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwiseInverse());
t1.translate(-v0);
VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
VERIFY_IS_APPROX(t1*v1, t0*v1);
// translation * vector
t0.setIdentity();
t0.translate(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
// AlignedScaling * vector
t0.setIdentity();
t0.scale(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
}
template<typename Scalar, int Mode, int Options> void transformations()
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp
*/
using std::cos;
using std::abs;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,4,4> Matrix4;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisx;
typedef Transform<Scalar,2,Mode,Options> Transform2;
typedef Transform<Scalar,3,Mode,Options> Transform3;
typedef typename Transform3::MatrixType MatrixType;
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
typedef Translation<Scalar,2> Translation2;
typedef Translation<Scalar,3> Translation3;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random();
Matrix3 matrot1, m;
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>();
while(v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random();
while(v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random();
VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0);
if(abs(cos(a)) > test_precision<Scalar>())
{
VERIFY_IS_APPROX(cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
}
m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
Quaternionx q1, q2;
q1 = AngleAxisx(a, v0.normalized());
q2 = AngleAxisx(a, v1.normalized());
// rotation matrix conversion
matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
* AngleAxisx(Scalar(0.2), Vector3::UnitY())
* AngleAxisx(Scalar(0.3), Vector3::UnitZ());
VERIFY_IS_APPROX(matrot1 * v1,
AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
* (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
* (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
// angle-axis conversion
AngleAxisx aa = AngleAxisx(q1);
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
// The following test is stable only if 2*angle != angle and v1 is not colinear with axis
if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) )
{
VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
}
aa.fromRotationMatrix(aa.toRotationMatrix());
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
// The following test is stable only if 2*angle != angle and v1 is not colinear with axis
if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) )
{
VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
}
// AngleAxis
VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
AngleAxisx aa1;
m = q1.toRotationMatrix();
aa1 = m;
VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
Quaternionx(m).toRotationMatrix());
// Transform
// TODO complete the tests !
a = 0;
while (abs(a)<Scalar(0.1))
a = internal::random<Scalar>(-Scalar(0.4)*Scalar(EIGEN_PI), Scalar(0.4)*Scalar(EIGEN_PI));
q1 = AngleAxisx(a, v0.normalized());
Transform3 t0, t1, t2;
// first test setIdentity() and Identity()
t0.setIdentity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.matrix().setZero();
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwiseInverse());
t1.translate(-v0);
VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
t1.setIdentity(); t1.scale(v0).rotate(q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
// More transform constructors, operator=, operator*=
Matrix3 mat3 = Matrix3::Random();
Matrix4 mat4;
mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
Transform3 tmat3(mat3), tmat4(mat4);
if(Mode!=int(AffineCompact))
tmat4.matrix()(3,3) = Scalar(1);
VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
Vector3 v3 = Vector3::Random().normalized();
AngleAxisx aa3(a3, v3);
Transform3 t3(aa3);
Transform3 t4;
t4 = aa3;
VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
t4.rotate(AngleAxisx(-a3,v3));
VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
t4 *= aa3;
VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
do {
v3 = Vector3::Random();
dont_over_optimize(v3);
} while (v3.cwiseAbs().minCoeff()<NumTraits<Scalar>::epsilon());
Translation3 tv3(v3);
Transform3 t5(tv3);
t4 = tv3;
VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
t4.translate((-v3).eval());
VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
t4 *= tv3;
VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
AlignedScaling3 sv3(v3);
Transform3 t6(sv3);
t4 = sv3;
VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
t4.scale(v3.cwiseInverse());
VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
t4 *= sv3;
VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
// matrix * transform
VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix());
// chained Transform product
VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
// check that Transform product doesn't have aliasing problems
t5 = t4;
t5 = t5*t5;
VERIFY_IS_APPROX(t5, t4*t4);
// 2D transformation
Transform2 t20, t21;
Vector2 v20 = Vector2::Random();
Vector2 v21 = Vector2::Random();
for (int k=0; k<2; ++k)
if (abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
t21.pretranslate(v20).scale(v21).matrix());
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
* (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
// Transform - new API
// 3D
t0.setIdentity();
t0.rotate(q1).scale(v0).translate(v0);
// mat * aligned scaling and mat * translation
t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// mat * transformation and aligned scaling * translation
t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.scale(s0).translate(v0);
t1 = Eigen::Scaling(s0) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.prescale(s0);
t1 = Eigen::Scaling(s0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0 = t3;
t0.scale(s0);
t1 = t3 * Eigen::Scaling(s0,s0,s0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.prescale(s0);
t1 = Eigen::Scaling(s0,s0,s0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0 = t3;
t0.scale(s0);
t1 = t3 * Eigen::Scaling(s0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.prescale(s0);
t1 = Eigen::Scaling(s0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.prerotate(q1).prescale(v0).pretranslate(v0);
// translation * aligned scaling and transformation * mat
t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// scaling * mat and translation * mat
t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.scale(v0).translate(v0).rotate(q1);
// translation * mat and aligned scaling * transformation
t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * aligned scaling
t0.scale(v0);
t1 *= AlignedScaling3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
t1 = t1 * v0.asDiagonal();
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * translation
t0.translate(v0);
t1 = t1 * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * transformation
t0.pretranslate(v0);
t1 = Translation3(v0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transform * quaternion
t0.rotate(q1);
t1 = t1 * q1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * quaternion
t0.translate(v1).rotate(q1);
t1 = t1 * (Translation3(v1) * q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// aligned scaling * quaternion
t0.scale(v1).rotate(q1);
t1 = t1 * (AlignedScaling3(v1) * q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * transform
t0.prerotate(q1);
t1 = q1 * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * translation
t0.rotate(q1).translate(v1);
t1 = t1 * (q1 * Translation3(v1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * aligned scaling
t0.rotate(q1).scale(v1);
t1 = t1 * (q1 * AlignedScaling3(v1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// test transform inversion
t0.setIdentity();
t0.translate(v0);
do {
t0.linear().setRandom();
} while(t0.linear().jacobiSvd().singularValues()(2)<test_precision<Scalar>());
Matrix4 t044 = Matrix4::Zero();
t044(3,3) = 1;
t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
t0.setIdentity();
t0.translate(v0).rotate(q1);
t044 = Matrix4::Zero();
t044(3,3) = 1;
t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
Matrix3 mat_rotation, mat_scaling;
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
t0.computeRotationScaling(&mat_rotation, &mat_scaling);
VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
t0.computeScalingRotation(&mat_scaling, &mat_rotation);
VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
// test casting
Transform<float,3,Mode> t1f = t1.template cast<float>();
VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
Transform<double,3,Mode> t1d = t1.template cast<double>();
VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
Translation3 tr1(v0);
Translation<float,3> tr1f = tr1.template cast<float>();
VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
Translation<double,3> tr1d = tr1.template cast<double>();
VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
AngleAxis<float> aa1f = aa1.template cast<float>();
VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
AngleAxis<double> aa1d = aa1.template cast<double>();
VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
Rotation2D<Scalar> r2d1(internal::random<Scalar>());
Rotation2D<float> r2d1f = r2d1.template cast<float>();
VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
Rotation2D<double> r2d1d = r2d1.template cast<double>();
VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
for(int k=0; k<100; ++k)
{
Scalar angle = internal::random<Scalar>(-100,100);
Rotation2D<Scalar> rot2(angle);
VERIFY( rot2.smallestPositiveAngle() >= 0 );
VERIFY( rot2.smallestPositiveAngle() <= Scalar(2)*Scalar(EIGEN_PI) );
VERIFY_IS_APPROX( angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle()) );
VERIFY( rot2.smallestAngle() >= -Scalar(EIGEN_PI) );
VERIFY( rot2.smallestAngle() <= Scalar(EIGEN_PI) );
VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle()) );
Matrix<Scalar,2,2> rot2_as_mat(rot2);
Rotation2D<Scalar> rot3(rot2_as_mat);
VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot3.angle()) );
}
s0 = internal::random<Scalar>(-100,100);
s1 = internal::random<Scalar>(-100,100);
Rotation2D<Scalar> R0(s0), R1(s1);
t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0));
t21 = Translation2(v20) * R0 * Eigen::Scaling(s0);
VERIFY_IS_APPROX(t20,t21);
t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0));
t21 = Translation2(v20) * Eigen::Scaling(s0);
VERIFY_IS_APPROX(t20,t21);
VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle());
VERIFY_IS_APPROX( angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle()) );
VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle());
if(std::cos(s0)>0)
VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1));
else
VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle());
// Check path length
Scalar l = 0;
int path_steps = 100;
for(int k=0; k<path_steps; ++k)
{
Scalar a1 = R0.slerp(Scalar(k)/Scalar(path_steps), R1).angle();
Scalar a2 = R0.slerp(Scalar(k+1)/Scalar(path_steps), R1).angle();
l += std::abs(a2-a1);
}
VERIFY(l<=Scalar(EIGEN_PI)*(Scalar(1)+NumTraits<Scalar>::epsilon()*Scalar(path_steps/2)));
// check basic features
{
Rotation2D<Scalar> r1; // default ctor
r1 = Rotation2D<Scalar>(s0); // copy assignment
VERIFY_IS_APPROX(r1.angle(),s0);
Rotation2D<Scalar> r2(r1); // copy ctor
VERIFY_IS_APPROX(r2.angle(),s0);
}
{
Transform3 t32(Matrix4::Random()), t33, t34;
t34 = t33 = t32;
t32.scale(v0);
t33*=AlignedScaling3(v0);
VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
t33 = t34 * AlignedScaling3(v0);
VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
}
}
template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
{
VERIFY_IS_APPROX( q*(a1*v), (q*a1)*v );
VERIFY_IS_APPROX( q*(a2*v), (q*a2)*v );
VERIFY_IS_APPROX( q*(p*h).hnormalized(), ((q*p)*h).hnormalized() );
}
template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
{
VERIFY_IS_APPROX( a1*(q*v), (a1*q)*v );
VERIFY_IS_APPROX( a2*(q*v), (a2*q)*v );
VERIFY_IS_APPROX( p *(q*v).homogeneous(), (p *q)*v.homogeneous() );
transform_associativity_left(a1, a2,p, q, v, h);
}
template<typename Scalar, int Dim, int Options,typename RotationType>
void transform_associativity(const RotationType& R)
{
typedef Matrix<Scalar,Dim,1> VectorType;
typedef Matrix<Scalar,Dim+1,1> HVectorType;
typedef Matrix<Scalar,Dim,Dim> LinearType;
typedef Matrix<Scalar,Dim+1,Dim+1> MatrixType;
typedef Transform<Scalar,Dim,AffineCompact,Options> AffineCompactType;
typedef Transform<Scalar,Dim,Affine,Options> AffineType;
typedef Transform<Scalar,Dim,Projective,Options> ProjectiveType;
typedef DiagonalMatrix<Scalar,Dim> ScalingType;
typedef Translation<Scalar,Dim> TranslationType;
AffineCompactType A1c; A1c.matrix().setRandom();
AffineCompactType A2c; A2c.matrix().setRandom();
AffineType A1(A1c);
AffineType A2(A2c);
ProjectiveType P1; P1.matrix().setRandom();
VectorType v1 = VectorType::Random();
VectorType v2 = VectorType::Random();
HVectorType h1 = HVectorType::Random();
Scalar s1 = internal::random<Scalar>();
LinearType L = LinearType::Random();
MatrixType M = MatrixType::Random();
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2, v2, h1) );
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2c, v2, h1) );
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1) );
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1) );
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1) );
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1) );
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1) );
CALL_SUBTEST( transform_associativity_left(A1c, A1, P1, L, v2, h1) );
CALL_SUBTEST( transform_associativity2(A1c, A1, P1, R, v2, h1) );
VERIFY_IS_APPROX( A1*(M*h1), (A1*M)*h1 );
VERIFY_IS_APPROX( A1c*(M*h1), (A1c*M)*h1 );
VERIFY_IS_APPROX( P1*(M*h1), (P1*M)*h1 );
VERIFY_IS_APPROX( M*(A1*h1), (M*A1)*h1 );
VERIFY_IS_APPROX( M*(A1c*h1), (M*A1c)*h1 );
VERIFY_IS_APPROX( M*(P1*h1), ((M*P1)*h1) );
}
template<typename Scalar> void transform_alignment()
{
typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a;
typedef Transform<Scalar,3,Projective,DontAlign> Projective3u;
EIGEN_ALIGN_MAX Scalar array1[16];
EIGEN_ALIGN_MAX Scalar array2[16];
EIGEN_ALIGN_MAX Scalar array3[16+1];
Scalar* array3u = array3+1;
Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a;
Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u;
Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u;
p1->matrix().setRandom();
*p2 = *p1;
*p3 = *p1;
VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
}
template<typename Scalar, int Dim, int Options> void transform_products()
{
typedef Matrix<Scalar,Dim+1,Dim+1> Mat;
typedef Transform<Scalar,Dim,Projective,Options> Proj;
typedef Transform<Scalar,Dim,Affine,Options> Aff;
typedef Transform<Scalar,Dim,AffineCompact,Options> AffC;
Proj p; p.matrix().setRandom();
Aff a; a.linear().setRandom(); a.translation().setRandom();
AffC ac = a;
Mat p_m(p.matrix()), a_m(a.matrix());
VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m);
VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m);
VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m);
VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m);
VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m);
VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m);
VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m);
VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m);
}
template<typename Scalar, int Mode, int Options> void transformations_no_scale()
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.h
*/
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisx;
typedef Transform<Scalar,3,Mode,Options> Transform3;
typedef Translation<Scalar,3> Translation3;
typedef Matrix<Scalar,4,4> Matrix4;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random();
Transform3 t0, t1, t2;
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
Quaternionx q1, q2;
q1 = AngleAxisx(a, v0.normalized());
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.setIdentity();
t1.setIdentity();
v1 = Vector3::Ones();
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.translate(-v0);
VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
VERIFY_IS_APPROX(t1*v1, t0*v1);
// translation * vector
t0.setIdentity();
t0.translate(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
// Conversion to matrix.
Transform3 t3;
t3.linear() = q1.toRotationMatrix();
t3.translation() = v1;
Matrix4 m3 = t3.matrix();
VERIFY((m3 * m3.inverse()).isIdentity(test_precision<Scalar>()));
// Verify implicit last row is initialized.
VERIFY_IS_APPROX(Vector4(m3.row(3)), Vector4(0.0, 0.0, 0.0, 1.0));
VERIFY_IS_APPROX(t3.rotation(), t3.linear());
if(Mode==Isometry)
VERIFY(t3.rotation().data()==t3.linear().data());
}
template<typename Scalar, int Mode, int Options> void transformations_computed_scaling_continuity()
{
typedef Matrix<Scalar, 3, 1> Vector3;
typedef Transform<Scalar, 3, Mode, Options> Transform3;
typedef Matrix<Scalar, 3, 3> Matrix3;
// Given: two transforms that differ by '2*eps'.
Scalar eps(1e-3);
Vector3 v0 = Vector3::Random().normalized(),
v1 = Vector3::Random().normalized(),
v3 = Vector3::Random().normalized();
Transform3 t0, t1;
// The interesting case is when their determinants have different signs.
Matrix3 rank2 = 50 * v0 * v0.adjoint() + 20 * v1 * v1.adjoint();
t0.linear() = rank2 + eps * v3 * v3.adjoint();
t1.linear() = rank2 - eps * v3 * v3.adjoint();
// When: computing the rotation-scaling parts
Matrix3 r0, s0, r1, s1;
t0.computeRotationScaling(&r0, &s0);
t1.computeRotationScaling(&r1, &s1);
// Then: the scaling parts should differ by no more than '2*eps'.
const Scalar c(2.1); // 2 + room for rounding errors
VERIFY((s0 - s1).norm() < c * eps);
}
EIGEN_DECLARE_TEST(geo_transformations)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() ));
CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() ));
CALL_SUBTEST_1(( transformations_computed_scaling_continuity<double,Affine,AutoAlign>() ));
CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() ));
CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() ));
CALL_SUBTEST_2(( transform_alignment<float>() ));
CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
CALL_SUBTEST_3(( transform_alignment<double>() ));
CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() ));
CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() ));
CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() ));
CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() ));
CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() ));
CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() ));
CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() ));
CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() ));
CALL_SUBTEST_8(( transform_associativity<double,2,ColMajor>(Rotation2D<double>(internal::random<double>()*double(EIGEN_PI))) ));
CALL_SUBTEST_8(( transform_associativity<double,3,ColMajor>(Quaterniond::UnitRandom()) ));
CALL_SUBTEST_9(( transformations_no_scale<double,Affine,AutoAlign>() ));
CALL_SUBTEST_9(( transformations_no_scale<double,Isometry,AutoAlign>() ));
}
}