COSC-4P80-Assignment-2/lib/eigen-3.4.0/test/prec_inverse_4x4.cpp

83 lines
3.0 KiB
C++
Raw Permalink Normal View History

2024-10-21 16:42:03 -04:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
#include <algorithm>
template<typename MatrixType> void inverse_permutation_4x4()
{
typedef typename MatrixType::Scalar Scalar;
Vector4i indices(0,1,2,3);
for(int i = 0; i < 24; ++i)
{
MatrixType m = PermutationMatrix<4>(indices);
MatrixType inv = m.inverse();
double error = double( (m*inv-MatrixType::Identity()).norm() / NumTraits<Scalar>::epsilon() );
EIGEN_DEBUG_VAR(error)
VERIFY(error == 0.0);
std::next_permutation(indices.data(),indices.data()+4);
}
}
template<typename MatrixType> void inverse_general_4x4(int repeat)
{
using std::abs;
typedef typename MatrixType::Scalar Scalar;
double error_sum = 0., error_max = 0.;
for(int i = 0; i < repeat; ++i)
{
MatrixType m;
bool is_invertible;
do {
m = MatrixType::Random();
is_invertible = Eigen::FullPivLU<MatrixType>(m).isInvertible();
} while(!is_invertible);
MatrixType inv = m.inverse();
double error = double( (m*inv-MatrixType::Identity()).norm());
error_sum += error;
error_max = (std::max)(error_max, error);
}
std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
double error_avg = error_sum / repeat;
EIGEN_DEBUG_VAR(error_avg);
EIGEN_DEBUG_VAR(error_max);
// FIXME that 1.25 used to be a 1.0 until the NumTraits changes on 28 April 2010, what's going wrong??
// FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21.
VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
{
int s = 5;//internal::random<int>(4,10);
int i = 0;//internal::random<int>(0,s-4);
int j = 0;//internal::random<int>(0,s-4);
Matrix<Scalar,5,5> mat(s,s);
mat.setRandom();
MatrixType submat = mat.template block<4,4>(i,j);
MatrixType mat_inv = mat.template block<4,4>(i,j).inverse();
VERIFY_IS_APPROX(mat_inv, submat.inverse());
mat.template block<4,4>(i,j) = submat.inverse();
VERIFY_IS_APPROX(mat_inv, (mat.template block<4,4>(i,j)));
}
}
EIGEN_DECLARE_TEST(prec_inverse_4x4)
{
CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
CALL_SUBTEST_1(( inverse_general_4x4<Matrix<float,4,4,RowMajor> >(200000 * g_repeat) ));
CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,ColMajor> >(200000 * g_repeat) ));
CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
}