COSC-4P80-Assignment-2/lib/eigen-3.4.0/unsupported/test/cxx11_tensor_ifft.cpp

155 lines
5.8 KiB
C++
Raw Permalink Normal View History

2024-10-21 16:42:03 -04:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <complex>
#include <cmath>
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
template <int DataLayout>
static void test_1D_fft_ifft_invariant(int sequence_length) {
Tensor<double, 1, DataLayout> tensor(sequence_length);
tensor.setRandom();
array<int, 1> fft;
fft[0] = 0;
Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft;
Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), sequence_length);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), sequence_length);
for (int i = 0; i < sequence_length; ++i) {
VERIFY_IS_APPROX(static_cast<float>(tensor(i)), static_cast<float>(std::real(tensor_after_fft_ifft(i))));
}
}
template <int DataLayout>
static void test_2D_fft_ifft_invariant(int dim0, int dim1) {
Tensor<double, 2, DataLayout> tensor(dim0, dim1);
tensor.setRandom();
array<int, 2> fft;
fft[0] = 0;
fft[1] = 1;
Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft;
Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
for (int i = 0; i < dim0; ++i) {
for (int j = 0; j < dim1; ++j) {
//std::cout << "[" << i << "][" << j << "]" << " Original data: " << tensor(i,j) << " Transformed data:" << tensor_after_fft_ifft(i,j) << std::endl;
VERIFY_IS_APPROX(static_cast<float>(tensor(i,j)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j))));
}
}
}
template <int DataLayout>
static void test_3D_fft_ifft_invariant(int dim0, int dim1, int dim2) {
Tensor<double, 3, DataLayout> tensor(dim0, dim1, dim2);
tensor.setRandom();
array<int, 3> fft;
fft[0] = 0;
fft[1] = 1;
fft[2] = 2;
Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft;
Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
for (int i = 0; i < dim0; ++i) {
for (int j = 0; j < dim1; ++j) {
for (int k = 0; k < dim2; ++k) {
VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j,k))));
}
}
}
}
template <int DataLayout>
static void test_sub_fft_ifft_invariant(int dim0, int dim1, int dim2, int dim3) {
Tensor<double, 4, DataLayout> tensor(dim0, dim1, dim2, dim3);
tensor.setRandom();
array<int, 2> fft;
fft[0] = 2;
fft[1] = 0;
Tensor<std::complex<double>, 4, DataLayout> tensor_after_fft;
Tensor<double, 4, DataLayout> tensor_after_fft_ifft;
tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::RealPart, Eigen::FFT_REVERSE>(fft);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
VERIFY_IS_EQUAL(tensor_after_fft.dimension(3), dim3);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(3), dim3);
for (int i = 0; i < dim0; ++i) {
for (int j = 0; j < dim1; ++j) {
for (int k = 0; k < dim2; ++k) {
for (int l = 0; l < dim3; ++l) {
VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k,l)), static_cast<float>(tensor_after_fft_ifft(i,j,k,l)));
}
}
}
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_ifft) {
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(4));
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(16));
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(32));
CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(1024*1024));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(4,4));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(8,16));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(16,32));
CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(1024,1024));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(4,4,4));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(8,16,32));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(16,4,8));
CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(256,256,256));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(4,4,4,4));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(8,16,32,64));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(16,4,8,12));
CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(64,64,64,64));
}