COSC-4P80-Assignment-2/lib/eigen-3.4.0/unsupported/test/cxx11_tensor_reverse.cpp

191 lines
5.2 KiB
C++
Raw Permalink Normal View History

2024-10-21 16:42:03 -04:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com and
// Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::array;
template <int DataLayout>
static void test_simple_reverse()
{
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
tensor.setRandom();
array<bool, 4> dim_rev;
dim_rev[0] = false;
dim_rev[1] = true;
dim_rev[2] = true;
dim_rev[3] = false;
Tensor<float, 4, DataLayout> reversed_tensor;
reversed_tensor = tensor.reverse(dim_rev);
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l));
}
}
}
}
dim_rev[0] = true;
dim_rev[1] = false;
dim_rev[2] = false;
dim_rev[3] = false;
reversed_tensor = tensor.reverse(dim_rev);
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l));
}
}
}
}
dim_rev[0] = true;
dim_rev[1] = false;
dim_rev[2] = false;
dim_rev[3] = true;
reversed_tensor = tensor.reverse(dim_rev);
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l));
}
}
}
}
}
template <int DataLayout>
static void test_expr_reverse(bool LValue)
{
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
tensor.setRandom();
array<bool, 4> dim_rev;
dim_rev[0] = false;
dim_rev[1] = true;
dim_rev[2] = false;
dim_rev[3] = true;
Tensor<float, 4, DataLayout> expected(2, 3, 5, 7);
if (LValue) {
expected.reverse(dim_rev) = tensor;
} else {
expected = tensor.reverse(dim_rev);
}
Tensor<float, 4, DataLayout> result(2,3,5,7);
array<ptrdiff_t, 4> src_slice_dim;
src_slice_dim[0] = 2;
src_slice_dim[1] = 3;
src_slice_dim[2] = 1;
src_slice_dim[3] = 7;
array<ptrdiff_t, 4> src_slice_start;
src_slice_start[0] = 0;
src_slice_start[1] = 0;
src_slice_start[2] = 0;
src_slice_start[3] = 0;
array<ptrdiff_t, 4> dst_slice_dim = src_slice_dim;
array<ptrdiff_t, 4> dst_slice_start = src_slice_start;
for (int i = 0; i < 5; ++i) {
if (LValue) {
result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) =
tensor.slice(src_slice_start, src_slice_dim);
} else {
result.slice(dst_slice_start, dst_slice_dim) =
tensor.slice(src_slice_start, src_slice_dim).reverse(dim_rev);
}
src_slice_start[2] += 1;
dst_slice_start[2] += 1;
}
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_EQUAL(result.dimension(1), 3);
VERIFY_IS_EQUAL(result.dimension(2), 5);
VERIFY_IS_EQUAL(result.dimension(3), 7);
for (int i = 0; i < expected.dimension(0); ++i) {
for (int j = 0; j < expected.dimension(1); ++j) {
for (int k = 0; k < expected.dimension(2); ++k) {
for (int l = 0; l < expected.dimension(3); ++l) {
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
}
}
}
}
dst_slice_start[2] = 0;
result.setRandom();
for (int i = 0; i < 5; ++i) {
if (LValue) {
result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) =
tensor.slice(dst_slice_start, dst_slice_dim);
} else {
result.slice(dst_slice_start, dst_slice_dim) =
tensor.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim);
}
dst_slice_start[2] += 1;
}
for (int i = 0; i < expected.dimension(0); ++i) {
for (int j = 0; j < expected.dimension(1); ++j) {
for (int k = 0; k < expected.dimension(2); ++k) {
for (int l = 0; l < expected.dimension(3); ++l) {
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
}
}
}
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_reverse)
{
CALL_SUBTEST(test_simple_reverse<ColMajor>());
CALL_SUBTEST(test_simple_reverse<RowMajor>());
CALL_SUBTEST(test_expr_reverse<ColMajor>(true));
CALL_SUBTEST(test_expr_reverse<RowMajor>(true));
CALL_SUBTEST(test_expr_reverse<ColMajor>(false));
CALL_SUBTEST(test_expr_reverse<RowMajor>(false));
}