150 lines
4.5 KiB
C++
150 lines
4.5 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
|
||
|
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
#include "sparse.h"
|
||
|
#include <Eigen/SparseQR>
|
||
|
|
||
|
template<typename MatrixType,typename DenseMat>
|
||
|
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150)
|
||
|
{
|
||
|
eigen_assert(maxRows >= maxCols);
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
int rows = internal::random<int>(1,maxRows);
|
||
|
int cols = internal::random<int>(1,maxCols);
|
||
|
double density = (std::max)(8./(rows*cols), 0.01);
|
||
|
|
||
|
A.resize(rows,cols);
|
||
|
dA.resize(rows,cols);
|
||
|
initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
|
||
|
A.makeCompressed();
|
||
|
int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
|
||
|
for(int k=0; k<nop; ++k)
|
||
|
{
|
||
|
int j0 = internal::random<int>(0,cols-1);
|
||
|
int j1 = internal::random<int>(0,cols-1);
|
||
|
Scalar s = internal::random<Scalar>();
|
||
|
A.col(j0) = s * A.col(j1);
|
||
|
dA.col(j0) = s * dA.col(j1);
|
||
|
}
|
||
|
|
||
|
// if(rows<cols) {
|
||
|
// A.conservativeResize(cols,cols);
|
||
|
// dA.conservativeResize(cols,cols);
|
||
|
// dA.bottomRows(cols-rows).setZero();
|
||
|
// }
|
||
|
|
||
|
return rows;
|
||
|
}
|
||
|
|
||
|
template<typename Scalar> void test_sparseqr_scalar()
|
||
|
{
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
|
||
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
|
||
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||
|
MatrixType A;
|
||
|
DenseMat dA;
|
||
|
DenseVector refX,x,b;
|
||
|
SparseQR<MatrixType, COLAMDOrdering<int> > solver;
|
||
|
generate_sparse_rectangular_problem(A,dA);
|
||
|
|
||
|
b = dA * DenseVector::Random(A.cols());
|
||
|
solver.compute(A);
|
||
|
|
||
|
// Q should be MxM
|
||
|
VERIFY_IS_EQUAL(solver.matrixQ().rows(), A.rows());
|
||
|
VERIFY_IS_EQUAL(solver.matrixQ().cols(), A.rows());
|
||
|
|
||
|
// R should be MxN
|
||
|
VERIFY_IS_EQUAL(solver.matrixR().rows(), A.rows());
|
||
|
VERIFY_IS_EQUAL(solver.matrixR().cols(), A.cols());
|
||
|
|
||
|
// Q and R can be multiplied
|
||
|
DenseMat recoveredA = solver.matrixQ()
|
||
|
* DenseMat(solver.matrixR().template triangularView<Upper>())
|
||
|
* solver.colsPermutation().transpose();
|
||
|
VERIFY_IS_EQUAL(recoveredA.rows(), A.rows());
|
||
|
VERIFY_IS_EQUAL(recoveredA.cols(), A.cols());
|
||
|
|
||
|
// and in the full rank case the original matrix is recovered
|
||
|
if (solver.rank() == A.cols())
|
||
|
{
|
||
|
VERIFY_IS_APPROX(A, recoveredA);
|
||
|
}
|
||
|
|
||
|
if(internal::random<float>(0,1)>0.5f)
|
||
|
solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change.
|
||
|
if (solver.info() != Success)
|
||
|
{
|
||
|
std::cerr << "sparse QR factorization failed\n";
|
||
|
exit(0);
|
||
|
return;
|
||
|
}
|
||
|
x = solver.solve(b);
|
||
|
if (solver.info() != Success)
|
||
|
{
|
||
|
std::cerr << "sparse QR factorization failed\n";
|
||
|
exit(0);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Compare with a dense QR solver
|
||
|
ColPivHouseholderQR<DenseMat> dqr(dA);
|
||
|
refX = dqr.solve(b);
|
||
|
|
||
|
bool rank_deficient = A.cols()>A.rows() || dqr.rank()<A.cols();
|
||
|
if(rank_deficient)
|
||
|
{
|
||
|
// rank deficient problem -> we might have to increase the threshold
|
||
|
// to get a correct solution.
|
||
|
RealScalar th = RealScalar(20)*dA.colwise().norm().maxCoeff()*(A.rows()+A.cols()) * NumTraits<RealScalar>::epsilon();
|
||
|
for(Index k=0; (k<16) && !test_isApprox(A*x,b); ++k)
|
||
|
{
|
||
|
th *= RealScalar(10);
|
||
|
solver.setPivotThreshold(th);
|
||
|
solver.compute(A);
|
||
|
x = solver.solve(b);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
VERIFY_IS_APPROX(A * x, b);
|
||
|
|
||
|
// For rank deficient problem, the estimated rank might
|
||
|
// be slightly off, so let's only raise a warning in such cases.
|
||
|
if(rank_deficient) ++g_test_level;
|
||
|
VERIFY_IS_EQUAL(solver.rank(), dqr.rank());
|
||
|
if(rank_deficient) --g_test_level;
|
||
|
|
||
|
if(solver.rank()==A.cols()) // full rank
|
||
|
VERIFY_IS_APPROX(x, refX);
|
||
|
// else
|
||
|
// VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
|
||
|
|
||
|
// Compute explicitly the matrix Q
|
||
|
MatrixType Q, QtQ, idM;
|
||
|
Q = solver.matrixQ();
|
||
|
//Check ||Q' * Q - I ||
|
||
|
QtQ = Q * Q.adjoint();
|
||
|
idM.resize(Q.rows(), Q.rows()); idM.setIdentity();
|
||
|
VERIFY(idM.isApprox(QtQ));
|
||
|
|
||
|
// Q to dense
|
||
|
DenseMat dQ;
|
||
|
dQ = solver.matrixQ();
|
||
|
VERIFY_IS_APPROX(Q, dQ);
|
||
|
}
|
||
|
EIGEN_DECLARE_TEST(sparseqr)
|
||
|
{
|
||
|
for(int i=0; i<g_repeat; ++i)
|
||
|
{
|
||
|
CALL_SUBTEST_1(test_sparseqr_scalar<double>());
|
||
|
CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
|
||
|
}
|
||
|
}
|
||
|
|