243 lines
8.0 KiB
C++
243 lines
8.0 KiB
C++
|
//=====================================================
|
||
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
//=====================================================
|
||
|
//
|
||
|
// This program is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License
|
||
|
// as published by the Free Software Foundation; either version 2
|
||
|
// of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// This program is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU General Public License for more details.
|
||
|
// You should have received a copy of the GNU General Public License
|
||
|
// along with this program; if not, write to the Free Software
|
||
|
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
//
|
||
|
#ifndef EIGEN3_INTERFACE_HH
|
||
|
#define EIGEN3_INTERFACE_HH
|
||
|
|
||
|
#include <Eigen/Eigen>
|
||
|
#include <vector>
|
||
|
#include "btl.hh"
|
||
|
|
||
|
using namespace Eigen;
|
||
|
|
||
|
template<class real, int SIZE=Dynamic>
|
||
|
class eigen3_interface
|
||
|
{
|
||
|
|
||
|
public :
|
||
|
|
||
|
enum {IsFixedSize = (SIZE!=Dynamic)};
|
||
|
|
||
|
typedef real real_type;
|
||
|
|
||
|
typedef std::vector<real> stl_vector;
|
||
|
typedef std::vector<stl_vector> stl_matrix;
|
||
|
|
||
|
typedef Eigen::Matrix<real,SIZE,SIZE> gene_matrix;
|
||
|
typedef Eigen::Matrix<real,SIZE,1> gene_vector;
|
||
|
|
||
|
static inline std::string name( void )
|
||
|
{
|
||
|
return EIGEN_MAKESTRING(BTL_PREFIX);
|
||
|
}
|
||
|
|
||
|
static void free_matrix(gene_matrix & /*A*/, int /*N*/) {}
|
||
|
|
||
|
static void free_vector(gene_vector & /*B*/) {}
|
||
|
|
||
|
static BTL_DONT_INLINE void matrix_from_stl(gene_matrix & A, stl_matrix & A_stl){
|
||
|
A.resize(A_stl[0].size(), A_stl.size());
|
||
|
|
||
|
for (unsigned int j=0; j<A_stl.size() ; j++){
|
||
|
for (unsigned int i=0; i<A_stl[j].size() ; i++){
|
||
|
A.coeffRef(i,j) = A_stl[j][i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static BTL_DONT_INLINE void vector_from_stl(gene_vector & B, stl_vector & B_stl){
|
||
|
B.resize(B_stl.size(),1);
|
||
|
|
||
|
for (unsigned int i=0; i<B_stl.size() ; i++){
|
||
|
B.coeffRef(i) = B_stl[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static BTL_DONT_INLINE void vector_to_stl(gene_vector & B, stl_vector & B_stl){
|
||
|
for (unsigned int i=0; i<B_stl.size() ; i++){
|
||
|
B_stl[i] = B.coeff(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static BTL_DONT_INLINE void matrix_to_stl(gene_matrix & A, stl_matrix & A_stl){
|
||
|
int N=A_stl.size();
|
||
|
|
||
|
for (int j=0;j<N;j++){
|
||
|
A_stl[j].resize(N);
|
||
|
for (int i=0;i<N;i++){
|
||
|
A_stl[j][i] = A.coeff(i,j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void matrix_matrix_product(const gene_matrix & A, const gene_matrix & B, gene_matrix & X, int /*N*/){
|
||
|
X.noalias() = A*B;
|
||
|
}
|
||
|
|
||
|
static inline void transposed_matrix_matrix_product(const gene_matrix & A, const gene_matrix & B, gene_matrix & X, int /*N*/){
|
||
|
X.noalias() = A.transpose()*B.transpose();
|
||
|
}
|
||
|
|
||
|
static inline void ata_product(const gene_matrix & A, gene_matrix & X, int /*N*/){
|
||
|
//X.noalias() = A.transpose()*A;
|
||
|
X.template triangularView<Lower>().setZero();
|
||
|
X.template selfadjointView<Lower>().rankUpdate(A.transpose());
|
||
|
}
|
||
|
|
||
|
static inline void aat_product(const gene_matrix & A, gene_matrix & X, int /*N*/){
|
||
|
X.template triangularView<Lower>().setZero();
|
||
|
X.template selfadjointView<Lower>().rankUpdate(A);
|
||
|
}
|
||
|
|
||
|
static inline void matrix_vector_product(const gene_matrix & A, const gene_vector & B, gene_vector & X, int /*N*/){
|
||
|
X.noalias() = A*B;
|
||
|
}
|
||
|
|
||
|
static inline void symv(const gene_matrix & A, const gene_vector & B, gene_vector & X, int /*N*/){
|
||
|
X.noalias() = (A.template selfadjointView<Lower>() * B);
|
||
|
// internal::product_selfadjoint_vector<real,0,LowerTriangularBit,false,false>(N,A.data(),N, B.data(), 1, X.data(), 1);
|
||
|
}
|
||
|
|
||
|
template<typename Dest, typename Src> static void triassign(Dest& dst, const Src& src)
|
||
|
{
|
||
|
typedef typename Dest::Scalar Scalar;
|
||
|
typedef typename internal::packet_traits<Scalar>::type Packet;
|
||
|
const int PacketSize = sizeof(Packet)/sizeof(Scalar);
|
||
|
int size = dst.cols();
|
||
|
for(int j=0; j<size; j+=1)
|
||
|
{
|
||
|
// const int alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
|
||
|
Scalar* A0 = dst.data() + j*dst.stride();
|
||
|
int starti = j;
|
||
|
int alignedEnd = starti;
|
||
|
int alignedStart = (starti) + internal::first_aligned(&A0[starti], size-starti);
|
||
|
alignedEnd = alignedStart + ((size-alignedStart)/(2*PacketSize))*(PacketSize*2);
|
||
|
|
||
|
// do the non-vectorizable part of the assignment
|
||
|
for (int index = starti; index<alignedStart ; ++index)
|
||
|
{
|
||
|
if(Dest::Flags&RowMajorBit)
|
||
|
dst.copyCoeff(j, index, src);
|
||
|
else
|
||
|
dst.copyCoeff(index, j, src);
|
||
|
}
|
||
|
|
||
|
// do the vectorizable part of the assignment
|
||
|
for (int index = alignedStart; index<alignedEnd; index+=PacketSize)
|
||
|
{
|
||
|
if(Dest::Flags&RowMajorBit)
|
||
|
dst.template copyPacket<Src, Aligned, Unaligned>(j, index, src);
|
||
|
else
|
||
|
dst.template copyPacket<Src, Aligned, Unaligned>(index, j, src);
|
||
|
}
|
||
|
|
||
|
// do the non-vectorizable part of the assignment
|
||
|
for (int index = alignedEnd; index<size; ++index)
|
||
|
{
|
||
|
if(Dest::Flags&RowMajorBit)
|
||
|
dst.copyCoeff(j, index, src);
|
||
|
else
|
||
|
dst.copyCoeff(index, j, src);
|
||
|
}
|
||
|
//dst.col(j).tail(N-j) = src.col(j).tail(N-j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static EIGEN_DONT_INLINE void syr2(gene_matrix & A, gene_vector & X, gene_vector & Y, int N){
|
||
|
// internal::product_selfadjoint_rank2_update<real,0,LowerTriangularBit>(N,A.data(),N, X.data(), 1, Y.data(), 1, -1);
|
||
|
for(int j=0; j<N; ++j)
|
||
|
A.col(j).tail(N-j) += X[j] * Y.tail(N-j) + Y[j] * X.tail(N-j);
|
||
|
}
|
||
|
|
||
|
static EIGEN_DONT_INLINE void ger(gene_matrix & A, gene_vector & X, gene_vector & Y, int N){
|
||
|
for(int j=0; j<N; ++j)
|
||
|
A.col(j) += X * Y[j];
|
||
|
}
|
||
|
|
||
|
static EIGEN_DONT_INLINE void rot(gene_vector & A, gene_vector & B, real c, real s, int /*N*/){
|
||
|
internal::apply_rotation_in_the_plane(A, B, JacobiRotation<real>(c,s));
|
||
|
}
|
||
|
|
||
|
static inline void atv_product(gene_matrix & A, gene_vector & B, gene_vector & X, int /*N*/){
|
||
|
X.noalias() = (A.transpose()*B);
|
||
|
}
|
||
|
|
||
|
static inline void axpy(real coef, const gene_vector & X, gene_vector & Y, int /*N*/){
|
||
|
Y += coef * X;
|
||
|
}
|
||
|
|
||
|
static inline void axpby(real a, const gene_vector & X, real b, gene_vector & Y, int /*N*/){
|
||
|
Y = a*X + b*Y;
|
||
|
}
|
||
|
|
||
|
static EIGEN_DONT_INLINE void copy_matrix(const gene_matrix & source, gene_matrix & cible, int /*N*/){
|
||
|
cible = source;
|
||
|
}
|
||
|
|
||
|
static EIGEN_DONT_INLINE void copy_vector(const gene_vector & source, gene_vector & cible, int /*N*/){
|
||
|
cible = source;
|
||
|
}
|
||
|
|
||
|
static inline void trisolve_lower(const gene_matrix & L, const gene_vector& B, gene_vector& X, int /*N*/){
|
||
|
X = L.template triangularView<Lower>().solve(B);
|
||
|
}
|
||
|
|
||
|
static inline void trisolve_lower_matrix(const gene_matrix & L, const gene_matrix& B, gene_matrix& X, int /*N*/){
|
||
|
X = L.template triangularView<Upper>().solve(B);
|
||
|
}
|
||
|
|
||
|
static inline void trmm(const gene_matrix & L, const gene_matrix& B, gene_matrix& X, int /*N*/){
|
||
|
X.noalias() = L.template triangularView<Lower>() * B;
|
||
|
}
|
||
|
|
||
|
static inline void cholesky(const gene_matrix & X, gene_matrix & C, int /*N*/){
|
||
|
C = X;
|
||
|
internal::llt_inplace<real,Lower>::blocked(C);
|
||
|
//C = X.llt().matrixL();
|
||
|
// C = X;
|
||
|
// Cholesky<gene_matrix>::computeInPlace(C);
|
||
|
// Cholesky<gene_matrix>::computeInPlaceBlock(C);
|
||
|
}
|
||
|
|
||
|
static inline void lu_decomp(const gene_matrix & X, gene_matrix & C, int /*N*/){
|
||
|
C = X.fullPivLu().matrixLU();
|
||
|
}
|
||
|
|
||
|
static inline void partial_lu_decomp(const gene_matrix & X, gene_matrix & C, int N){
|
||
|
Matrix<DenseIndex,1,Dynamic> piv(N);
|
||
|
DenseIndex nb;
|
||
|
C = X;
|
||
|
internal::partial_lu_inplace(C,piv,nb);
|
||
|
// C = X.partialPivLu().matrixLU();
|
||
|
}
|
||
|
|
||
|
static inline void tridiagonalization(const gene_matrix & X, gene_matrix & C, int N){
|
||
|
typename Tridiagonalization<gene_matrix>::CoeffVectorType aux(N-1);
|
||
|
C = X;
|
||
|
internal::tridiagonalization_inplace(C, aux);
|
||
|
}
|
||
|
|
||
|
static inline void hessenberg(const gene_matrix & X, gene_matrix & C, int /*N*/){
|
||
|
C = HessenbergDecomposition<gene_matrix>(X).packedMatrix();
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
};
|
||
|
|
||
|
#endif
|