COSC-4P80-Assignment-2/lib/eigen-3.4.0/blas/testing/cblat2.f

3280 lines
114 KiB
FortranFixed
Raw Normal View History

2024-10-21 16:42:03 -04:00
*> \brief \b CBLAT2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM CBLAT2
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the COMPLEX Level 2 Blas.
*>
*> The program must be driven by a short data file. The first 18 records
*> of the file are read using list-directed input, the last 17 records
*> are read using the format ( A6, L2 ). An annotated example of a data
*> file can be obtained by deleting the first 3 characters from the
*> following 35 lines:
*> 'cblat2.out' NAME OF SUMMARY OUTPUT FILE
*> 6 UNIT NUMBER OF SUMMARY FILE
*> 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE
*> -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
*> F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
*> F LOGICAL FLAG, T TO STOP ON FAILURES.
*> T LOGICAL FLAG, T TO TEST ERROR EXITS.
*> 16.0 THRESHOLD VALUE OF TEST RATIO
*> 6 NUMBER OF VALUES OF N
*> 0 1 2 3 5 9 VALUES OF N
*> 4 NUMBER OF VALUES OF K
*> 0 1 2 4 VALUES OF K
*> 4 NUMBER OF VALUES OF INCX AND INCY
*> 1 2 -1 -2 VALUES OF INCX AND INCY
*> 3 NUMBER OF VALUES OF ALPHA
*> (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
*> 3 NUMBER OF VALUES OF BETA
*> (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
*> CGEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CGBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CHEMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CHBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CHPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTRMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTBMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTPMV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTRSV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTBSV T PUT F FOR NO TEST. SAME COLUMNS.
*> CTPSV T PUT F FOR NO TEST. SAME COLUMNS.
*> CGERC T PUT F FOR NO TEST. SAME COLUMNS.
*> CGERU T PUT F FOR NO TEST. SAME COLUMNS.
*> CHER T PUT F FOR NO TEST. SAME COLUMNS.
*> CHPR T PUT F FOR NO TEST. SAME COLUMNS.
*> CHER2 T PUT F FOR NO TEST. SAME COLUMNS.
*> CHPR2 T PUT F FOR NO TEST. SAME COLUMNS.
*>
*> Further Details
*> ===============
*>
*> See:
*>
*> Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J..
*> An extended set of Fortran Basic Linear Algebra Subprograms.
*>
*> Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics
*> and Computer Science Division, Argonne National Laboratory,
*> 9700 South Cass Avenue, Argonne, Illinois 60439, US.
*>
*> Or
*>
*> NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms
*> Group Ltd., NAG Central Office, 256 Banbury Road, Oxford
*> OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st
*> Street, Suite 100, Downers Grove, Illinois 60515-1263, USA.
*>
*>
*> -- Written on 10-August-1987.
*> Richard Hanson, Sandia National Labs.
*> Jeremy Du Croz, NAG Central Office.
*>
*> 10-9-00: Change STATUS='NEW' to 'UNKNOWN' so that the testers
*> can be run multiple times without deleting generated
*> output files (susan)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup complex_blas_testing
*
* =====================================================================
PROGRAM CBLAT2
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN
PARAMETER ( NIN = 5 )
INTEGER NSUBS
PARAMETER ( NSUBS = 17 )
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
INTEGER NMAX, INCMAX
PARAMETER ( NMAX = 65, INCMAX = 2 )
INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX
PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7,
$ NALMAX = 7, NBEMAX = 7 )
* .. Local Scalars ..
REAL EPS, ERR, THRESH
INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB,
$ NOUT, NTRA
LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE,
$ TSTERR
CHARACTER*1 TRANS
CHARACTER*6 SNAMET
CHARACTER*32 SNAPS, SUMMRY
* .. Local Arrays ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ),
$ X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( 2*NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX )
LOGICAL LTEST( NSUBS )
CHARACTER*6 SNAMES( NSUBS )
* .. External Functions ..
REAL SDIFF
LOGICAL LCE
EXTERNAL SDIFF, LCE
* .. External Subroutines ..
EXTERNAL CCHK1, CCHK2, CCHK3, CCHK4, CCHK5, CCHK6,
$ CCHKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Data statements ..
DATA SNAMES/'CGEMV ', 'CGBMV ', 'CHEMV ', 'CHBMV ',
$ 'CHPMV ', 'CTRMV ', 'CTBMV ', 'CTPMV ',
$ 'CTRSV ', 'CTBSV ', 'CTPSV ', 'CGERC ',
$ 'CGERU ', 'CHER ', 'CHPR ', 'CHER2 ',
$ 'CHPR2 '/
* .. Executable Statements ..
*
* Read name and unit number for summary output file and open file.
*
READ( NIN, FMT = * )SUMMRY
READ( NIN, FMT = * )NOUT
OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
NOUTC = NOUT
*
* Read name and unit number for snapshot output file and open file.
*
READ( NIN, FMT = * )SNAPS
READ( NIN, FMT = * )NTRA
TRACE = NTRA.GE.0
IF( TRACE )THEN
OPEN( NTRA, FILE = SNAPS, STATUS = 'UNKNOWN' )
END IF
* Read the flag that directs rewinding of the snapshot file.
READ( NIN, FMT = * )REWI
REWI = REWI.AND.TRACE
* Read the flag that directs stopping on any failure.
READ( NIN, FMT = * )SFATAL
* Read the flag that indicates whether error exits are to be tested.
READ( NIN, FMT = * )TSTERR
* Read the threshold value of the test ratio
READ( NIN, FMT = * )THRESH
*
* Read and check the parameter values for the tests.
*
* Values of N
READ( NIN, FMT = * )NIDIM
IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN
WRITE( NOUT, FMT = 9997 )'N', NIDMAX
GO TO 230
END IF
READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM )
DO 10 I = 1, NIDIM
IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN
WRITE( NOUT, FMT = 9996 )NMAX
GO TO 230
END IF
10 CONTINUE
* Values of K
READ( NIN, FMT = * )NKB
IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN
WRITE( NOUT, FMT = 9997 )'K', NKBMAX
GO TO 230
END IF
READ( NIN, FMT = * )( KB( I ), I = 1, NKB )
DO 20 I = 1, NKB
IF( KB( I ).LT.0 )THEN
WRITE( NOUT, FMT = 9995 )
GO TO 230
END IF
20 CONTINUE
* Values of INCX and INCY
READ( NIN, FMT = * )NINC
IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN
WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX
GO TO 230
END IF
READ( NIN, FMT = * )( INC( I ), I = 1, NINC )
DO 30 I = 1, NINC
IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN
WRITE( NOUT, FMT = 9994 )INCMAX
GO TO 230
END IF
30 CONTINUE
* Values of ALPHA
READ( NIN, FMT = * )NALF
IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN
WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX
GO TO 230
END IF
READ( NIN, FMT = * )( ALF( I ), I = 1, NALF )
* Values of BETA
READ( NIN, FMT = * )NBET
IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN
WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX
GO TO 230
END IF
READ( NIN, FMT = * )( BET( I ), I = 1, NBET )
*
* Report values of parameters.
*
WRITE( NOUT, FMT = 9993 )
WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM )
WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB )
WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC )
WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF )
WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET )
IF( .NOT.TSTERR )THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9980 )
END IF
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )THRESH
WRITE( NOUT, FMT = * )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 40 I = 1, NSUBS
LTEST( I ) = .FALSE.
40 CONTINUE
50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT
DO 60 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 70
60 CONTINUE
WRITE( NOUT, FMT = 9986 )SNAMET
STOP
70 LTEST( I ) = LTESTT
GO TO 50
*
80 CONTINUE
CLOSE ( NIN )
*
* Compute EPS (the machine precision).
*
EPS = EPSILON(RZERO)
WRITE( NOUT, FMT = 9998 )EPS
*
* Check the reliability of CMVCH using exact data.
*
N = MIN( 32, NMAX )
DO 120 J = 1, N
DO 110 I = 1, N
A( I, J ) = MAX( I - J + 1, 0 )
110 CONTINUE
X( J ) = J
Y( J ) = ZERO
120 CONTINUE
DO 130 J = 1, N
YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3
130 CONTINUE
* YY holds the exact result. On exit from CMVCH YT holds
* the result computed by CMVCH.
TRANS = 'N'
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
TRANS = 'T'
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G,
$ YY, EPS, ERR, FATAL, NOUT, .TRUE. )
SAME = LCE( YY, YT, N )
IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN
WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR
STOP
END IF
*
* Test each subroutine in turn.
*
DO 210 ISNUM = 1, NSUBS
WRITE( NOUT, FMT = * )
IF( .NOT.LTEST( ISNUM ) )THEN
* Subprogram is not to be tested.
WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM )
ELSE
SRNAMT = SNAMES( ISNUM )
* Test error exits.
IF( TSTERR )THEN
CALL CCHKE( ISNUM, SNAMES( ISNUM ), NOUT )
WRITE( NOUT, FMT = * )
END IF
* Test computations.
INFOT = 0
OK = .TRUE.
FATAL = .FALSE.
GO TO ( 140, 140, 150, 150, 150, 160, 160,
$ 160, 160, 160, 160, 170, 170, 180,
$ 180, 190, 190 )ISNUM
* Test CGEMV, 01, and CGBMV, 02.
140 CALL CCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test CHEMV, 03, CHBMV, 04, and CHPMV, 05.
150 CALL CCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF,
$ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS,
$ X, XX, XS, Y, YY, YS, YT, G )
GO TO 200
* Test CTRMV, 06, CTBMV, 07, CTPMV, 08,
* CTRSV, 09, CTBSV, 10, and CTPSV, 11.
160 CALL CCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z )
GO TO 200
* Test CGERC, 12, CGERU, 13.
170 CALL CCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test CHER, 14, and CHPR, 15.
180 CALL CCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
GO TO 200
* Test CHER2, 16, and CHPR2, 17.
190 CALL CCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE,
$ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC,
$ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS,
$ YT, G, Z )
*
200 IF( FATAL.AND.SFATAL )
$ GO TO 220
END IF
210 CONTINUE
WRITE( NOUT, FMT = 9982 )
GO TO 240
*
220 CONTINUE
WRITE( NOUT, FMT = 9981 )
GO TO 240
*
230 CONTINUE
WRITE( NOUT, FMT = 9987 )
*
240 CONTINUE
IF( TRACE )
$ CLOSE ( NTRA )
CLOSE ( NOUT )
STOP
*
9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES',
$ 'S THAN', F8.2 )
9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 )
9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ',
$ 'THAN ', I2 )
9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 )
9995 FORMAT( ' VALUE OF K IS LESS THAN 0' )
9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ',
$ I2 )
9993 FORMAT( ' TESTS OF THE COMPLEX LEVEL 2 BLAS', //' THE F',
$ 'OLLOWING PARAMETER VALUES WILL BE USED:' )
9992 FORMAT( ' FOR N ', 9I6 )
9991 FORMAT( ' FOR K ', 7I6 )
9990 FORMAT( ' FOR INCX AND INCY ', 7I6 )
9989 FORMAT( ' FOR ALPHA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9988 FORMAT( ' FOR BETA ',
$ 7( '(', F4.1, ',', F4.1, ') ', : ) )
9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM',
$ /' ******* TESTS ABANDONED *******' )
9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T',
$ 'ESTS ABANDONED *******' )
9985 FORMAT( ' ERROR IN CMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU',
$ 'ATED WRONGLY.', /' CMVCH WAS CALLED WITH TRANS = ', A1,
$ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', /
$ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.'
$ , /' ******* TESTS ABANDONED *******' )
9984 FORMAT( A6, L2 )
9983 FORMAT( 1X, A6, ' WAS NOT TESTED' )
9982 FORMAT( /' END OF TESTS' )
9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' )
9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' )
*
* End of CBLAT2.
*
END
SUBROUTINE CCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests CGEMV and CGBMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BLS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA,
$ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK,
$ NL, NS
LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN
CHARACTER*1 TRANS, TRANSS
CHARACTER*3 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CGBMV, CGEMV, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'NTC'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 11
ELSE IF( BANDED )THEN
NARGS = 13
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IKU = 1, NK
IF( BANDED )THEN
KU = KB( IKU )
KL = MAX( KU - 1, 0 )
ELSE
KU = N - 1
KL = M - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = KL + KU + 1
ELSE
LDA = M
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA,
$ LDA, KL, KU, RESET, TRANSL )
*
DO 90 IC = 1, 3
TRANS = ICH( IC: IC )
TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C'
*
IF( TRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*NL
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX,
$ ABS( INCX ), 0, NL - 1, RESET, TRANSL )
IF( NL.GT.1 )THEN
X( NL/2 ) = ZERO
XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*ML
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, ML, Y, 1,
$ YY, ABS( INCY ), 0, ML - 1,
$ RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
TRANSS = TRANS
MS = M
NS = N
KLS = KL
KUS = KU
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ TRANS, M, N, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL CGEMV( TRANS, M, N, ALPHA, AA,
$ LDA, XX, INCX, BETA, YY,
$ INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ TRANS, M, N, KL, KU, ALPHA, LDA,
$ INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL CGBMV( TRANS, M, N, KL, KU, ALPHA,
$ AA, LDA, XX, INCX, BETA,
$ YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 130
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = TRANS.EQ.TRANSS
ISAME( 2 ) = MS.EQ.M
ISAME( 3 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LCE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LCE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LCE( YS, YY, LY )
ELSE
ISAME( 10 ) = LCERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 4 ) = KLS.EQ.KL
ISAME( 5 ) = KUS.EQ.KU
ISAME( 6 ) = ALS.EQ.ALPHA
ISAME( 7 ) = LCE( AS, AA, LAA )
ISAME( 8 ) = LDAS.EQ.LDA
ISAME( 9 ) = LCE( XS, XX, LX )
ISAME( 10 ) = INCXS.EQ.INCX
ISAME( 11 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 12 ) = LCE( YS, YY, LY )
ELSE
ISAME( 12 ) = LCERES( 'GE', ' ', 1,
$ ML, YS, YY,
$ ABS( INCY ) )
END IF
ISAME( 13 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report
* and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 130
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL CMVCH( TRANS, M, N, ALPHA, A,
$ NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR,
$ FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 130
ELSE
* Avoid repeating tests with M.le.0 or
* N.le.0.
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 140
*
130 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU,
$ ALPHA, LDA, INCX, BETA, INCY
END IF
*
140 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK1.
*
END
SUBROUTINE CCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET,
$ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX,
$ XS, Y, YY, YS, YT, G )
*
* Tests CHEMV, CHBMV and CHPMV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX,
$ NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ),
$ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ),
$ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, BETA, BLS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY,
$ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY,
$ N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHBMV, CHEMV, CHPMV, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 10
ELSE IF( BANDED )THEN
NARGS = 11
ELSE IF( PACKED )THEN
NARGS = 9
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA,
$ LDA, K, K, RESET, TRANSL )
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
DO 60 IA = 1, NALF
ALPHA = ALF( IA )
*
DO 50 IB = 1, NBET
BETA = BET( IB )
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the
* subroutine.
*
UPLOS = UPLO
NS = N
KS = K
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
BLS = BETA
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, N, ALPHA, LDA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL CHEMV( UPLO, N, ALPHA, AA, LDA, XX,
$ INCX, BETA, YY, INCY )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, N, K, ALPHA, LDA, INCX, BETA,
$ INCY
IF( REWI )
$ REWIND NTRA
CALL CHBMV( UPLO, N, K, ALPHA, AA, LDA,
$ XX, INCX, BETA, YY, INCY )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, N, ALPHA, INCX, BETA, INCY
IF( REWI )
$ REWIND NTRA
CALL CHPMV( UPLO, N, ALPHA, AA, XX, INCX,
$ BETA, YY, INCY )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( AS, AA, LAA )
ISAME( 5 ) = LDAS.EQ.LDA
ISAME( 6 ) = LCE( XS, XX, LX )
ISAME( 7 ) = INCXS.EQ.INCX
ISAME( 8 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 9 ) = LCE( YS, YY, LY )
ELSE
ISAME( 9 ) = LCERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 10 ) = INCYS.EQ.INCY
ELSE IF( BANDED )THEN
ISAME( 3 ) = KS.EQ.K
ISAME( 4 ) = ALS.EQ.ALPHA
ISAME( 5 ) = LCE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
ISAME( 7 ) = LCE( XS, XX, LX )
ISAME( 8 ) = INCXS.EQ.INCX
ISAME( 9 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 10 ) = LCE( YS, YY, LY )
ELSE
ISAME( 10 ) = LCERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 11 ) = INCYS.EQ.INCY
ELSE IF( PACKED )THEN
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( AS, AA, LAA )
ISAME( 5 ) = LCE( XS, XX, LX )
ISAME( 6 ) = INCXS.EQ.INCX
ISAME( 7 ) = BLS.EQ.BETA
IF( NULL )THEN
ISAME( 8 ) = LCE( YS, YY, LY )
ELSE
ISAME( 8 ) = LCERES( 'GE', ' ', 1, N,
$ YS, YY, ABS( INCY ) )
END IF
ISAME( 9 ) = INCYS.EQ.INCY
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result.
*
CALL CMVCH( 'N', N, N, ALPHA, A, NMAX, X,
$ INCX, BETA, Y, INCY, YT, G,
$ YY, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and
* return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0
GO TO 110
END IF
*
50 CONTINUE
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX,
$ BETA, INCY
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA,
$ INCX, BETA, INCY
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ BETA, INCY
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), AP, X,', I2, ',(', F4.1, ',', F4.1, '), Y,', I2,
$ ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(',
$ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',',
$ F4.1, '), Y,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', F4.1, '), ',
$ 'Y,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK2.
*
END
SUBROUTINE CCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z )
*
* Tests CTRMV, CTBMV, CTPMV, CTRSV, CTBSV and CTPSV.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XT( NMAX ), XX( NMAX*INCMAX ), Z( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB )
* .. Local Scalars ..
COMPLEX TRANSL
REAL ERR, ERRMAX
INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K,
$ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS
LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME
CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS
CHARACTER*2 ICHD, ICHU
CHARACTER*3 ICHT
* .. Local Arrays ..
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CMAKE, CMVCH, CTBMV, CTBSV, CTPMV, CTPSV,
$ CTRMV, CTRSV
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'R'
BANDED = SNAME( 3: 3 ).EQ.'B'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 8
ELSE IF( BANDED )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 7
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
* Set up zero vector for CMVCH.
DO 10 I = 1, NMAX
Z( I ) = ZERO
10 CONTINUE
*
DO 110 IN = 1, NIDIM
N = IDIM( IN )
*
IF( BANDED )THEN
NK = NKB
ELSE
NK = 1
END IF
DO 100 IK = 1, NK
IF( BANDED )THEN
K = KB( IK )
ELSE
K = N - 1
END IF
* Set LDA to 1 more than minimum value if room.
IF( BANDED )THEN
LDA = K + 1
ELSE
LDA = N
END IF
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
NULL = N.LE.0
*
DO 90 ICU = 1, 2
UPLO = ICHU( ICU: ICU )
*
DO 80 ICT = 1, 3
TRANS = ICHT( ICT: ICT )
*
DO 70 ICD = 1, 2
DIAG = ICHD( ICD: ICD )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A,
$ NMAX, AA, LDA, K, K, RESET, TRANSL )
*
DO 60 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX,
$ ABS( INCX ), 0, N - 1, RESET,
$ TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
TRANSS = TRANS
DIAGS = DIAG
NS = N
KS = K
DO 20 I = 1, LAA
AS( I ) = AA( I )
20 CONTINUE
LDAS = LDA
DO 30 I = 1, LX
XS( I ) = XX( I )
30 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTRMV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTBMV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL CTPMV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTRSV( UPLO, TRANS, DIAG, N, AA, LDA,
$ XX, INCX )
ELSE IF( BANDED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, K, LDA, INCX
IF( REWI )
$ REWIND NTRA
CALL CTBSV( UPLO, TRANS, DIAG, N, K, AA,
$ LDA, XX, INCX )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9995 )NC, SNAME,
$ UPLO, TRANS, DIAG, N, INCX
IF( REWI )
$ REWIND NTRA
CALL CTPSV( UPLO, TRANS, DIAG, N, AA, XX,
$ INCX )
END IF
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = TRANS.EQ.TRANSS
ISAME( 3 ) = DIAG.EQ.DIAGS
ISAME( 4 ) = NS.EQ.N
IF( FULL )THEN
ISAME( 5 ) = LCE( AS, AA, LAA )
ISAME( 6 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 7 ) = LCE( XS, XX, LX )
ELSE
ISAME( 7 ) = LCERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 8 ) = INCXS.EQ.INCX
ELSE IF( BANDED )THEN
ISAME( 5 ) = KS.EQ.K
ISAME( 6 ) = LCE( AS, AA, LAA )
ISAME( 7 ) = LDAS.EQ.LDA
IF( NULL )THEN
ISAME( 8 ) = LCE( XS, XX, LX )
ELSE
ISAME( 8 ) = LCERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 9 ) = INCXS.EQ.INCX
ELSE IF( PACKED )THEN
ISAME( 5 ) = LCE( AS, AA, LAA )
IF( NULL )THEN
ISAME( 6 ) = LCE( XS, XX, LX )
ELSE
ISAME( 6 ) = LCERES( 'GE', ' ', 1, N, XS,
$ XX, ABS( INCX ) )
END IF
ISAME( 7 ) = INCXS.EQ.INCX
END IF
*
* If data was incorrectly changed, report and
* return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
IF( SNAME( 4: 5 ).EQ.'MV' )THEN
*
* Check the result.
*
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X,
$ INCX, ZERO, Z, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .TRUE. )
ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN
*
* Compute approximation to original vector.
*
DO 50 I = 1, N
Z( I ) = XX( 1 + ( I - 1 )*
$ ABS( INCX ) )
XX( 1 + ( I - 1 )*ABS( INCX ) )
$ = X( I )
50 CONTINUE
CALL CMVCH( TRANS, N, N, ONE, A, NMAX, Z,
$ INCX, ZERO, X, INCX, XT, G,
$ XX, EPS, ERR, FATAL, NOUT,
$ .FALSE. )
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 120
ELSE
* Avoid repeating tests with N.le.0.
GO TO 110
END IF
*
60 CONTINUE
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA,
$ INCX
ELSE IF( BANDED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K,
$ LDA, INCX
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ',
$ 'X,', I2, ') .' )
9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ),
$ ' A,', I3, ', X,', I2, ') .' )
9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,',
$ I3, ', X,', I2, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK3.
*
END
SUBROUTINE CCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests CGERC and CGERU.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS,
$ NC, ND, NS
LOGICAL CONJ, NULL, RESET, SAME
* .. Local Arrays ..
COMPLEX W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CGERC, CGERU, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, MIN
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
CONJ = SNAME( 5: 5 ).EQ.'C'
* Define the number of arguments.
NARGS = 9
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 120 IN = 1, NIDIM
N = IDIM( IN )
ND = N/2 + 1
*
DO 110 IM = 1, 2
IF( IM.EQ.1 )
$ M = MAX( N - ND, 0 )
IF( IM.EQ.2 )
$ M = MIN( N + ND, NMAX )
*
* Set LDA to 1 more than minimum value if room.
LDA = M
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 110
LAA = LDA*N
NULL = N.LE.0.OR.M.LE.0
*
DO 100 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*M
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ),
$ 0, M - 1, RESET, TRANSL )
IF( M.GT.1 )THEN
X( M/2 ) = ZERO
XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO
END IF
*
DO 90 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 80 IA = 1, NALF
ALPHA = ALF( IA )
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX,
$ AA, LDA, M - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
MS = M
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N,
$ ALPHA, INCX, INCY, LDA
IF( CONJ )THEN
IF( REWI )
$ REWIND NTRA
CALL CGERC( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
ELSE
IF( REWI )
$ REWIND NTRA
CALL CGERU( M, N, ALPHA, XX, INCX, YY, INCY, AA,
$ LDA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9993 )
FATAL = .TRUE.
GO TO 140
END IF
*
* See what data changed inside subroutine.
*
ISAME( 1 ) = MS.EQ.M
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LCE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LCE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LCERES( 'GE', ' ', M, N, AS, AA,
$ LDA )
END IF
ISAME( 9 ) = LDAS.EQ.LDA
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 140
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, M
Z( I ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, M
Z( I ) = X( M - I + 1 )
60 CONTINUE
END IF
DO 70 J = 1, N
IF( INCY.GT.0 )THEN
W( 1 ) = Y( J )
ELSE
W( 1 ) = Y( N - J + 1 )
END IF
IF( CONJ )
$ W( 1 ) = CONJG( W( 1 ) )
CALL CMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1,
$ ONE, A( 1, J ), 1, YT, G,
$ AA( 1 + ( J - 1 )*LDA ), EPS,
$ ERR, FATAL, NOUT, .TRUE. )
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 130
70 CONTINUE
ELSE
* Avoid repeating tests with M.le.0 or N.le.0.
GO TO 110
END IF
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 150
*
130 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
140 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA
*
150 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), '(', F4.1, ',', F4.1,
$ '), X,', I2, ', Y,', I2, ', A,', I3, ') ',
$ ' .' )
9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK4.
*
END
SUBROUTINE CCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests CHER and CHPR.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX ALPHA, TRANSL
REAL ERR, ERRMAX, RALPHA, RALS
INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA,
$ LDA, LDAS, LJ, LX, N, NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
COMPLEX W( 1 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHER, CHPR, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, CONJG, MAX, REAL
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 7
ELSE IF( PACKED )THEN
NARGS = 6
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 100 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 100
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 90 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 80 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 70 IA = 1, NALF
RALPHA = REAL( ALF( IA ) )
ALPHA = CMPLX( RALPHA, RZERO )
NULL = N.LE.0.OR.RALPHA.EQ.RZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX,
$ AA, LDA, N - 1, N - 1, RESET, TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
RALS = RALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ RALPHA, INCX, LDA
IF( REWI )
$ REWIND NTRA
CALL CHER( UPLO, N, RALPHA, XX, INCX, AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ RALPHA, INCX
IF( REWI )
$ REWIND NTRA
CALL CHPR( UPLO, N, RALPHA, XX, INCX, AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 120
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = RALS.EQ.RALPHA
ISAME( 4 ) = LCE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
IF( NULL )THEN
ISAME( 6 ) = LCE( AS, AA, LAA )
ELSE
ISAME( 6 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N, AS,
$ AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 7 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 30 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
30 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 120
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 40 I = 1, N
Z( I ) = X( I )
40 CONTINUE
ELSE
DO 50 I = 1, N
Z( I ) = X( N - I + 1 )
50 CONTINUE
END IF
JA = 1
DO 60 J = 1, N
W( 1 ) = CONJG( Z( J ) )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL CMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W,
$ 1, ONE, A( JJ, J ), 1, YT, G,
$ AA( JA ), EPS, ERR, FATAL, NOUT,
$ .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 110
60 CONTINUE
ELSE
* Avoid repeating tests if N.le.0.
IF( N.LE.0 )
$ GO TO 100
END IF
*
70 CONTINUE
*
80 CONTINUE
*
90 CONTINUE
*
100 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 130
*
110 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
120 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, RALPHA, INCX, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, RALPHA, INCX
END IF
*
130 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', AP) .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,',
$ I2, ', A,', I3, ') .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK5.
*
END
SUBROUTINE CCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI,
$ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX,
$ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G,
$ Z )
*
* Tests CHER2 and CHPR2.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, HALF, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ),
$ ONE = ( 1.0, 0.0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
* .. Scalar Arguments ..
REAL EPS, THRESH
INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA
LOGICAL FATAL, REWI, TRACE
CHARACTER*6 SNAME
* .. Array Arguments ..
COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ),
$ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ),
$ XX( NMAX*INCMAX ), Y( NMAX ),
$ YS( NMAX*INCMAX ), YT( NMAX ),
$ YY( NMAX*INCMAX ), Z( NMAX, 2 )
REAL G( NMAX )
INTEGER IDIM( NIDIM ), INC( NINC )
* .. Local Scalars ..
COMPLEX ALPHA, ALS, TRANSL
REAL ERR, ERRMAX
INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX,
$ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N,
$ NARGS, NC, NS
LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER
CHARACTER*1 UPLO, UPLOS
CHARACTER*2 ICH
* .. Local Arrays ..
COMPLEX W( 2 )
LOGICAL ISAME( 13 )
* .. External Functions ..
LOGICAL LCE, LCERES
EXTERNAL LCE, LCERES
* .. External Subroutines ..
EXTERNAL CHER2, CHPR2, CMAKE, CMVCH
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Data statements ..
DATA ICH/'UL'/
* .. Executable Statements ..
FULL = SNAME( 3: 3 ).EQ.'E'
PACKED = SNAME( 3: 3 ).EQ.'P'
* Define the number of arguments.
IF( FULL )THEN
NARGS = 9
ELSE IF( PACKED )THEN
NARGS = 8
END IF
*
NC = 0
RESET = .TRUE.
ERRMAX = RZERO
*
DO 140 IN = 1, NIDIM
N = IDIM( IN )
* Set LDA to 1 more than minimum value if room.
LDA = N
IF( LDA.LT.NMAX )
$ LDA = LDA + 1
* Skip tests if not enough room.
IF( LDA.GT.NMAX )
$ GO TO 140
IF( PACKED )THEN
LAA = ( N*( N + 1 ) )/2
ELSE
LAA = LDA*N
END IF
*
DO 130 IC = 1, 2
UPLO = ICH( IC: IC )
UPPER = UPLO.EQ.'U'
*
DO 120 IX = 1, NINC
INCX = INC( IX )
LX = ABS( INCX )*N
*
* Generate the vector X.
*
TRANSL = HALF
CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ),
$ 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
X( N/2 ) = ZERO
XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 110 IY = 1, NINC
INCY = INC( IY )
LY = ABS( INCY )*N
*
* Generate the vector Y.
*
TRANSL = ZERO
CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY,
$ ABS( INCY ), 0, N - 1, RESET, TRANSL )
IF( N.GT.1 )THEN
Y( N/2 ) = ZERO
YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO
END IF
*
DO 100 IA = 1, NALF
ALPHA = ALF( IA )
NULL = N.LE.0.OR.ALPHA.EQ.ZERO
*
* Generate the matrix A.
*
TRANSL = ZERO
CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A,
$ NMAX, AA, LDA, N - 1, N - 1, RESET,
$ TRANSL )
*
NC = NC + 1
*
* Save every datum before calling the subroutine.
*
UPLOS = UPLO
NS = N
ALS = ALPHA
DO 10 I = 1, LAA
AS( I ) = AA( I )
10 CONTINUE
LDAS = LDA
DO 20 I = 1, LX
XS( I ) = XX( I )
20 CONTINUE
INCXS = INCX
DO 30 I = 1, LY
YS( I ) = YY( I )
30 CONTINUE
INCYS = INCY
*
* Call the subroutine.
*
IF( FULL )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY, LDA
IF( REWI )
$ REWIND NTRA
CALL CHER2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA, LDA )
ELSE IF( PACKED )THEN
IF( TRACE )
$ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N,
$ ALPHA, INCX, INCY
IF( REWI )
$ REWIND NTRA
CALL CHPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY,
$ AA )
END IF
*
* Check if error-exit was taken incorrectly.
*
IF( .NOT.OK )THEN
WRITE( NOUT, FMT = 9992 )
FATAL = .TRUE.
GO TO 160
END IF
*
* See what data changed inside subroutines.
*
ISAME( 1 ) = UPLO.EQ.UPLOS
ISAME( 2 ) = NS.EQ.N
ISAME( 3 ) = ALS.EQ.ALPHA
ISAME( 4 ) = LCE( XS, XX, LX )
ISAME( 5 ) = INCXS.EQ.INCX
ISAME( 6 ) = LCE( YS, YY, LY )
ISAME( 7 ) = INCYS.EQ.INCY
IF( NULL )THEN
ISAME( 8 ) = LCE( AS, AA, LAA )
ELSE
ISAME( 8 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N,
$ AS, AA, LDA )
END IF
IF( .NOT.PACKED )THEN
ISAME( 9 ) = LDAS.EQ.LDA
END IF
*
* If data was incorrectly changed, report and return.
*
SAME = .TRUE.
DO 40 I = 1, NARGS
SAME = SAME.AND.ISAME( I )
IF( .NOT.ISAME( I ) )
$ WRITE( NOUT, FMT = 9998 )I
40 CONTINUE
IF( .NOT.SAME )THEN
FATAL = .TRUE.
GO TO 160
END IF
*
IF( .NOT.NULL )THEN
*
* Check the result column by column.
*
IF( INCX.GT.0 )THEN
DO 50 I = 1, N
Z( I, 1 ) = X( I )
50 CONTINUE
ELSE
DO 60 I = 1, N
Z( I, 1 ) = X( N - I + 1 )
60 CONTINUE
END IF
IF( INCY.GT.0 )THEN
DO 70 I = 1, N
Z( I, 2 ) = Y( I )
70 CONTINUE
ELSE
DO 80 I = 1, N
Z( I, 2 ) = Y( N - I + 1 )
80 CONTINUE
END IF
JA = 1
DO 90 J = 1, N
W( 1 ) = ALPHA*CONJG( Z( J, 2 ) )
W( 2 ) = CONJG( ALPHA )*CONJG( Z( J, 1 ) )
IF( UPPER )THEN
JJ = 1
LJ = J
ELSE
JJ = J
LJ = N - J + 1
END IF
CALL CMVCH( 'N', LJ, 2, ONE, Z( JJ, 1 ),
$ NMAX, W, 1, ONE, A( JJ, J ), 1,
$ YT, G, AA( JA ), EPS, ERR, FATAL,
$ NOUT, .TRUE. )
IF( FULL )THEN
IF( UPPER )THEN
JA = JA + LDA
ELSE
JA = JA + LDA + 1
END IF
ELSE
JA = JA + LJ
END IF
ERRMAX = MAX( ERRMAX, ERR )
* If got really bad answer, report and return.
IF( FATAL )
$ GO TO 150
90 CONTINUE
ELSE
* Avoid repeating tests with N.le.0.
IF( N.LE.0 )
$ GO TO 140
END IF
*
100 CONTINUE
*
110 CONTINUE
*
120 CONTINUE
*
130 CONTINUE
*
140 CONTINUE
*
* Report result.
*
IF( ERRMAX.LT.THRESH )THEN
WRITE( NOUT, FMT = 9999 )SNAME, NC
ELSE
WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX
END IF
GO TO 170
*
150 CONTINUE
WRITE( NOUT, FMT = 9995 )J
*
160 CONTINUE
WRITE( NOUT, FMT = 9996 )SNAME
IF( FULL )THEN
WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX,
$ INCY, LDA
ELSE IF( PACKED )THEN
WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY
END IF
*
170 CONTINUE
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL',
$ 'S)' )
9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH',
$ 'ANGED INCORRECTLY *******' )
9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C',
$ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2,
$ ' - SUSPECT *******' )
9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' )
9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 )
9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), X,', I2, ', Y,', I2, ', AP) ',
$ ' .' )
9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',',
$ F4.1, '), X,', I2, ', Y,', I2, ', A,', I3, ') ',
$ ' .' )
9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *',
$ '******' )
*
* End of CCHK6.
*
END
SUBROUTINE CCHKE( ISNUM, SRNAMT, NOUT )
*
* Tests the error exits from the Level 2 Blas.
* Requires a special version of the error-handling routine XERBLA.
* ALPHA, RALPHA, BETA, A, X and Y should not need to be defined.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER ISNUM, NOUT
CHARACTER*6 SRNAMT
* .. Scalars in Common ..
INTEGER INFOT, NOUTC
LOGICAL LERR, OK
* .. Local Scalars ..
COMPLEX ALPHA, BETA
REAL RALPHA
* .. Local Arrays ..
COMPLEX A( 1, 1 ), X( 1 ), Y( 1 )
* .. External Subroutines ..
EXTERNAL CGBMV, CGEMV, CGERC, CGERU, CHBMV, CHEMV, CHER,
$ CHER2, CHKXER, CHPMV, CHPR, CHPR2, CTBMV,
$ CTBSV, CTPMV, CTPSV, CTRMV, CTRSV
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUTC, OK, LERR
* .. Executable Statements ..
* OK is set to .FALSE. by the special version of XERBLA or by CHKXER
* if anything is wrong.
OK = .TRUE.
* LERR is set to .TRUE. by the special version of XERBLA each time
* it is called, and is then tested and re-set by CHKXER.
LERR = .FALSE.
GO TO ( 10, 20, 30, 40, 50, 60, 70, 80,
$ 90, 100, 110, 120, 130, 140, 150, 160,
$ 170 )ISNUM
10 INFOT = 1
CALL CGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
20 INFOT = 1
CALL CGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
30 INFOT = 1
CALL CHEMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHEMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHEMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
40 INFOT = 1
CALL CHBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CHBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CHBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
50 INFOT = 1
CALL CHPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CHPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
60 INFOT = 1
CALL CTRMV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTRMV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTRMV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
70 INFOT = 1
CALL CTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
80 INFOT = 1
CALL CTPMV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTPMV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTPMV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTPMV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTPMV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
90 INFOT = 1
CALL CTRSV( '/', 'N', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTRSV( 'U', '/', 'N', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTRSV( 'U', 'N', '/', 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
100 INFOT = 1
CALL CTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
110 INFOT = 1
CALL CTPSV( '/', 'N', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CTPSV( 'U', '/', 'N', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CTPSV( 'U', 'N', '/', 0, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CTPSV( 'U', 'N', 'N', -1, A, X, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CTPSV( 'U', 'N', 'N', 0, A, X, 0 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
120 INFOT = 1
CALL CGERC( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGERC( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGERC( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CGERC( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CGERC( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
130 INFOT = 1
CALL CGERU( -1, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGERU( 0, -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CGERU( 0, 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CGERU( 0, 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CGERU( 2, 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
140 INFOT = 1
CALL CHER( '/', 0, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHER( 'U', -1, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHER( 'U', 0, RALPHA, X, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER( 'U', 2, RALPHA, X, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
150 INFOT = 1
CALL CHPR( '/', 0, RALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPR( 'U', -1, RALPHA, X, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHPR( 'U', 0, RALPHA, X, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
160 INFOT = 1
CALL CHER2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHER2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHER2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHER2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CHER2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
GO TO 180
170 INFOT = 1
CALL CHPR2( '/', 0, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CHPR2( 'U', -1, ALPHA, X, 1, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CHPR2( 'U', 0, ALPHA, X, 0, Y, 1, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CHPR2( 'U', 0, ALPHA, X, 1, Y, 0, A )
CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
180 IF( OK )THEN
WRITE( NOUT, FMT = 9999 )SRNAMT
ELSE
WRITE( NOUT, FMT = 9998 )SRNAMT
END IF
RETURN
*
9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' )
9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****',
$ '**' )
*
* End of CCHKE.
*
END
SUBROUTINE CMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL,
$ KU, RESET, TRANSL )
*
* Generates values for an M by N matrix A within the bandwidth
* defined by KL and KU.
* Stores the values in the array AA in the data structure required
* by the routine, with unwanted elements set to rogue value.
*
* TYPE is 'GE', 'GB', 'HE', 'HB', 'HP', 'TR', 'TB' OR 'TP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) )
COMPLEX ROGUE
PARAMETER ( ROGUE = ( -1.0E10, 1.0E10 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0 )
REAL RROGUE
PARAMETER ( RROGUE = -1.0E10 )
* .. Scalar Arguments ..
COMPLEX TRANSL
INTEGER KL, KU, LDA, M, N, NMAX
LOGICAL RESET
CHARACTER*1 DIAG, UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX A( NMAX, * ), AA( * )
* .. Local Scalars ..
INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, JJ, KK
LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER
* .. External Functions ..
COMPLEX CBEG
EXTERNAL CBEG
* .. Intrinsic Functions ..
INTRINSIC CMPLX, CONJG, MAX, MIN, REAL
* .. Executable Statements ..
GEN = TYPE( 1: 1 ).EQ.'G'
SYM = TYPE( 1: 1 ).EQ.'H'
TRI = TYPE( 1: 1 ).EQ.'T'
UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U'
LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L'
UNIT = TRI.AND.DIAG.EQ.'U'
*
* Generate data in array A.
*
DO 20 J = 1, N
DO 10 I = 1, M
IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) )
$ THEN
IF( ( I.LE.J.AND.J - I.LE.KU ).OR.
$ ( I.GE.J.AND.I - J.LE.KL ) )THEN
A( I, J ) = CBEG( RESET ) + TRANSL
ELSE
A( I, J ) = ZERO
END IF
IF( I.NE.J )THEN
IF( SYM )THEN
A( J, I ) = CONJG( A( I, J ) )
ELSE IF( TRI )THEN
A( J, I ) = ZERO
END IF
END IF
END IF
10 CONTINUE
IF( SYM )
$ A( J, J ) = CMPLX( REAL( A( J, J ) ), RZERO )
IF( TRI )
$ A( J, J ) = A( J, J ) + ONE
IF( UNIT )
$ A( J, J ) = ONE
20 CONTINUE
*
* Store elements in array AS in data structure required by routine.
*
IF( TYPE.EQ.'GE' )THEN
DO 50 J = 1, N
DO 30 I = 1, M
AA( I + ( J - 1 )*LDA ) = A( I, J )
30 CONTINUE
DO 40 I = M + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
40 CONTINUE
50 CONTINUE
ELSE IF( TYPE.EQ.'GB' )THEN
DO 90 J = 1, N
DO 60 I1 = 1, KU + 1 - J
AA( I1 + ( J - 1 )*LDA ) = ROGUE
60 CONTINUE
DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J )
AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J )
70 CONTINUE
DO 80 I3 = I2, LDA
AA( I3 + ( J - 1 )*LDA ) = ROGUE
80 CONTINUE
90 CONTINUE
ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'TR' )THEN
DO 130 J = 1, N
IF( UPPER )THEN
IBEG = 1
IF( UNIT )THEN
IEND = J - 1
ELSE
IEND = J
END IF
ELSE
IF( UNIT )THEN
IBEG = J + 1
ELSE
IBEG = J
END IF
IEND = N
END IF
DO 100 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
100 CONTINUE
DO 110 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I, J )
110 CONTINUE
DO 120 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
120 CONTINUE
IF( SYM )THEN
JJ = J + ( J - 1 )*LDA
AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE )
END IF
130 CONTINUE
ELSE IF( TYPE.EQ.'HB'.OR.TYPE.EQ.'TB' )THEN
DO 170 J = 1, N
IF( UPPER )THEN
KK = KL + 1
IBEG = MAX( 1, KL + 2 - J )
IF( UNIT )THEN
IEND = KL
ELSE
IEND = KL + 1
END IF
ELSE
KK = 1
IF( UNIT )THEN
IBEG = 2
ELSE
IBEG = 1
END IF
IEND = MIN( KL + 1, 1 + M - J )
END IF
DO 140 I = 1, IBEG - 1
AA( I + ( J - 1 )*LDA ) = ROGUE
140 CONTINUE
DO 150 I = IBEG, IEND
AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J )
150 CONTINUE
DO 160 I = IEND + 1, LDA
AA( I + ( J - 1 )*LDA ) = ROGUE
160 CONTINUE
IF( SYM )THEN
JJ = KK + ( J - 1 )*LDA
AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE )
END IF
170 CONTINUE
ELSE IF( TYPE.EQ.'HP'.OR.TYPE.EQ.'TP' )THEN
IOFF = 0
DO 190 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 180 I = IBEG, IEND
IOFF = IOFF + 1
AA( IOFF ) = A( I, J )
IF( I.EQ.J )THEN
IF( UNIT )
$ AA( IOFF ) = ROGUE
IF( SYM )
$ AA( IOFF ) = CMPLX( REAL( AA( IOFF ) ), RROGUE )
END IF
180 CONTINUE
190 CONTINUE
END IF
RETURN
*
* End of CMAKE.
*
END
SUBROUTINE CMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y,
$ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV )
*
* Checks the results of the computational tests.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0, 0.0 ) )
REAL RZERO, RONE
PARAMETER ( RZERO = 0.0, RONE = 1.0 )
* .. Scalar Arguments ..
COMPLEX ALPHA, BETA
REAL EPS, ERR
INTEGER INCX, INCY, M, N, NMAX, NOUT
LOGICAL FATAL, MV
CHARACTER*1 TRANS
* .. Array Arguments ..
COMPLEX A( NMAX, * ), X( * ), Y( * ), YT( * ), YY( * )
REAL G( * )
* .. Local Scalars ..
COMPLEX C
REAL ERRI
INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL
LOGICAL CTRAN, TRAN
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CONJG, MAX, REAL, SQRT
* .. Statement Functions ..
REAL ABS1
* .. Statement Function definitions ..
ABS1( C ) = ABS( REAL( C ) ) + ABS( AIMAG( C ) )
* .. Executable Statements ..
TRAN = TRANS.EQ.'T'
CTRAN = TRANS.EQ.'C'
IF( TRAN.OR.CTRAN )THEN
ML = N
NL = M
ELSE
ML = M
NL = N
END IF
IF( INCX.LT.0 )THEN
KX = NL
INCXL = -1
ELSE
KX = 1
INCXL = 1
END IF
IF( INCY.LT.0 )THEN
KY = ML
INCYL = -1
ELSE
KY = 1
INCYL = 1
END IF
*
* Compute expected result in YT using data in A, X and Y.
* Compute gauges in G.
*
IY = KY
DO 40 I = 1, ML
YT( IY ) = ZERO
G( IY ) = RZERO
JX = KX
IF( TRAN )THEN
DO 10 J = 1, NL
YT( IY ) = YT( IY ) + A( J, I )*X( JX )
G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) )
JX = JX + INCXL
10 CONTINUE
ELSE IF( CTRAN )THEN
DO 20 J = 1, NL
YT( IY ) = YT( IY ) + CONJG( A( J, I ) )*X( JX )
G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) )
JX = JX + INCXL
20 CONTINUE
ELSE
DO 30 J = 1, NL
YT( IY ) = YT( IY ) + A( I, J )*X( JX )
G( IY ) = G( IY ) + ABS1( A( I, J ) )*ABS1( X( JX ) )
JX = JX + INCXL
30 CONTINUE
END IF
YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY )
G( IY ) = ABS1( ALPHA )*G( IY ) + ABS1( BETA )*ABS1( Y( IY ) )
IY = IY + INCYL
40 CONTINUE
*
* Compute the error ratio for this result.
*
ERR = ZERO
DO 50 I = 1, ML
ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS
IF( G( I ).NE.RZERO )
$ ERRI = ERRI/G( I )
ERR = MAX( ERR, ERRI )
IF( ERR*SQRT( EPS ).GE.RONE )
$ GO TO 60
50 CONTINUE
* If the loop completes, all results are at least half accurate.
GO TO 80
*
* Report fatal error.
*
60 FATAL = .TRUE.
WRITE( NOUT, FMT = 9999 )
DO 70 I = 1, ML
IF( MV )THEN
WRITE( NOUT, FMT = 9998 )I, YT( I ),
$ YY( 1 + ( I - 1 )*ABS( INCY ) )
ELSE
WRITE( NOUT, FMT = 9998 )I,
$ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I )
END IF
70 CONTINUE
*
80 CONTINUE
RETURN
*
9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
$ 'F ACCURATE *******', /' EXPECTED RE',
$ 'SULT COMPUTED RESULT' )
9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) )
*
* End of CMVCH.
*
END
LOGICAL FUNCTION LCE( RI, RJ, LR )
*
* Tests if two arrays are identical.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LR
* .. Array Arguments ..
COMPLEX RI( * ), RJ( * )
* .. Local Scalars ..
INTEGER I
* .. Executable Statements ..
DO 10 I = 1, LR
IF( RI( I ).NE.RJ( I ) )
$ GO TO 20
10 CONTINUE
LCE = .TRUE.
GO TO 30
20 CONTINUE
LCE = .FALSE.
30 RETURN
*
* End of LCE.
*
END
LOGICAL FUNCTION LCERES( TYPE, UPLO, M, N, AA, AS, LDA )
*
* Tests if selected elements in two arrays are equal.
*
* TYPE is 'GE', 'HE' or 'HP'.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER LDA, M, N
CHARACTER*1 UPLO
CHARACTER*2 TYPE
* .. Array Arguments ..
COMPLEX AA( LDA, * ), AS( LDA, * )
* .. Local Scalars ..
INTEGER I, IBEG, IEND, J
LOGICAL UPPER
* .. Executable Statements ..
UPPER = UPLO.EQ.'U'
IF( TYPE.EQ.'GE' )THEN
DO 20 J = 1, N
DO 10 I = M + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
10 CONTINUE
20 CONTINUE
ELSE IF( TYPE.EQ.'HE' )THEN
DO 50 J = 1, N
IF( UPPER )THEN
IBEG = 1
IEND = J
ELSE
IBEG = J
IEND = N
END IF
DO 30 I = 1, IBEG - 1
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
30 CONTINUE
DO 40 I = IEND + 1, LDA
IF( AA( I, J ).NE.AS( I, J ) )
$ GO TO 70
40 CONTINUE
50 CONTINUE
END IF
*
LCERES = .TRUE.
GO TO 80
70 CONTINUE
LCERES = .FALSE.
80 RETURN
*
* End of LCERES.
*
END
COMPLEX FUNCTION CBEG( RESET )
*
* Generates complex numbers as pairs of random numbers uniformly
* distributed between -0.5 and 0.5.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
LOGICAL RESET
* .. Local Scalars ..
INTEGER I, IC, J, MI, MJ
* .. Save statement ..
SAVE I, IC, J, MI, MJ
* .. Intrinsic Functions ..
INTRINSIC CMPLX
* .. Executable Statements ..
IF( RESET )THEN
* Initialize local variables.
MI = 891
MJ = 457
I = 7
J = 7
IC = 0
RESET = .FALSE.
END IF
*
* The sequence of values of I or J is bounded between 1 and 999.
* If initial I or J = 1,2,3,6,7 or 9, the period will be 50.
* If initial I or J = 4 or 8, the period will be 25.
* If initial I or J = 5, the period will be 10.
* IC is used to break up the period by skipping 1 value of I or J
* in 6.
*
IC = IC + 1
10 I = I*MI
J = J*MJ
I = I - 1000*( I/1000 )
J = J - 1000*( J/1000 )
IF( IC.GE.5 )THEN
IC = 0
GO TO 10
END IF
CBEG = CMPLX( ( I - 500 )/1001.0, ( J - 500 )/1001.0 )
RETURN
*
* End of CBEG.
*
END
REAL FUNCTION SDIFF( X, Y )
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
*
* .. Scalar Arguments ..
REAL X, Y
* .. Executable Statements ..
SDIFF = X - Y
RETURN
*
* End of SDIFF.
*
END
SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK )
*
* Tests whether XERBLA has detected an error when it should.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Executable Statements ..
IF( .NOT.LERR )THEN
WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT
OK = .FALSE.
END IF
LERR = .FALSE.
RETURN
*
9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D',
$ 'ETECTED BY ', A6, ' *****' )
*
* End of CHKXER.
*
END
SUBROUTINE XERBLA( SRNAME, INFO )
*
* This is a special version of XERBLA to be used only as part of
* the test program for testing error exits from the Level 2 BLAS
* routines.
*
* XERBLA is an error handler for the Level 2 BLAS routines.
*
* It is called by the Level 2 BLAS routines if an input parameter is
* invalid.
*
* Auxiliary routine for test program for Level 2 Blas.
*
* -- Written on 10-August-1987.
* Richard Hanson, Sandia National Labs.
* Jeremy Du Croz, NAG Central Office.
*
* .. Scalar Arguments ..
INTEGER INFO
CHARACTER*6 SRNAME
* .. Scalars in Common ..
INTEGER INFOT, NOUT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT
* .. Common blocks ..
COMMON /INFOC/INFOT, NOUT, OK, LERR
COMMON /SRNAMC/SRNAMT
* .. Executable Statements ..
LERR = .TRUE.
IF( INFO.NE.INFOT )THEN
IF( INFOT.NE.0 )THEN
WRITE( NOUT, FMT = 9999 )INFO, INFOT
ELSE
WRITE( NOUT, FMT = 9997 )INFO
END IF
OK = .FALSE.
END IF
IF( SRNAME.NE.SRNAMT )THEN
WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
OK = .FALSE.
END IF
RETURN
*
9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
$ ' OF ', I2, ' *******' )
9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
$ 'AD OF ', A6, ' *******' )
9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
$ ' *******' )
*
* End of XERBLA
*
END