main
Brett 2024-10-23 01:51:32 -04:00
parent e0b6f13834
commit 1b79238114
8 changed files with 274 additions and 83 deletions

View File

@ -0,0 +1,7 @@
<component name="CopyrightManager">
<settings default="GPL3">
<module2copyright>
<element module="All" copyright="GPL3" />
</module2copyright>
</settings>
</component>

View File

@ -1,10 +1,10 @@
cmake_minimum_required(VERSION 3.25)
project(COSC-4P80-Assignment-2 VERSION 0.0.2)
project(COSC-4P80-Assignment-2 VERSION 0.0.3)
option(ENABLE_ADDRSAN "Enable the address sanitizer" OFF)
option(ENABLE_UBSAN "Enable the ub sanitizer" OFF)
option(ENABLE_TSAN "Enable the thread data race sanitizer" OFF)
option(EIGEN_TEST_CXX11 "Enable testing with C++11 and C++11 features (e.g. Tensor module)." ON)
#option(EIGEN_TEST_CXX11 "Enable testing with C++11 and C++11 features (e.g. Tensor module)." ON)
set(CMAKE_CXX_STANDARD 17)
@ -14,7 +14,7 @@ endif()
add_subdirectory(lib/blt)
add_subdirectory(lib/eigen-3.4.0)
#add_subdirectory(lib/eigen-3.4.0)
include_directories(include/)
file(GLOB_RECURSE PROJECT_BUILD_FILES "${CMAKE_CURRENT_SOURCE_DIR}/src/*.cpp")
@ -24,7 +24,8 @@ add_executable(COSC-4P80-Assignment-2 ${PROJECT_BUILD_FILES})
target_compile_options(COSC-4P80-Assignment-2 PRIVATE -Wall -Wextra -Wpedantic -Wno-comment)
target_link_options(COSC-4P80-Assignment-2 PRIVATE -Wall -Wextra -Wpedantic -Wno-comment)
target_link_libraries(COSC-4P80-Assignment-2 PRIVATE BLT Eigen3::Eigen)
#target_link_libraries(COSC-4P80-Assignment-2 PRIVATE BLT Eigen3::Eigen)
target_link_libraries(COSC-4P80-Assignment-2 PRIVATE BLT)
if (${ENABLE_ADDRSAN} MATCHES ON)
target_compile_options(COSC-4P80-Assignment-2 PRIVATE -fsanitize=address)

View File

@ -19,14 +19,15 @@
#ifndef COSC_4P80_ASSIGNMENT_2_COMMON_H
#define COSC_4P80_ASSIGNMENT_2_COMMON_H
#include <Eigen/Dense>
namespace assign2
{
using Scalar = float;
struct data_t
{
bool is_bad = false;
std::vector<float> bins;
std::vector<Scalar> bins;
};
struct data_file_t
@ -37,9 +38,57 @@ namespace assign2
class layer_t;
class network_t;
using Scalar = float;
using matrix_t = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
using vector_t = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
struct weight_view
{
public:
weight_view(double* data, blt::size_t size): m_data(data), m_size(size)
{}
inline double& operator[](blt::size_t index) const
{
#if BLT_DEBUG_LEVEL > 0
if (index >= size)
throw std::runtime_error("Index is out of bounds!");
#endif
return m_data[index];
}
[[nodiscard]] inline blt::size_t size() const
{
return m_size;
}
[[nodiscard]] auto begin() const
{
return m_data;
}
[[nodiscard]] auto end() const
{
return m_data + m_size;
}
private:
double* m_data;
blt::size_t m_size;
};
/**
* this class exists purely as an optimization
*/
class weight_t
{
public:
weight_view allocate_view(blt::size_t count)
{
auto size = data.size();
data.resize(size + count);
return {&data[size], count};
}
private:
std::vector<double> data;
};
}
#endif //COSC_4P80_ASSIGNMENT_2_COMMON_H

View File

@ -35,13 +35,6 @@ namespace assign2
{
return call(s) * (1 - call(s));
}
vector_t operator()(vector_t out) const
{
for (auto& v : out)
v = call(v);
return out;
}
};
struct linear_function

View File

@ -27,50 +27,35 @@ namespace assign2
{
struct empty_init
{
template<int rows, int columns>
inline void operator()(Eigen::Matrix<Scalar, rows, columns>& matrix) const
inline Scalar operator()(blt::i32) const
{
for (auto r : matrix.rowwise())
{
for (auto& v : r)
v = 0;
}
return 0;
}
};
struct half_init
{
template<int rows, int columns>
inline void operator()(Eigen::Matrix<Scalar, rows, columns>& matrix) const
inline Scalar operator()(blt::i32) const
{
for (auto r : matrix.rowwise())
{
for (auto& v : r)
v = 0.5f;
}
return 0;
}
};
struct random_init
{
public:
explicit random_init(blt::size_t seed, float min = 0.5 - 0.125, float max = 0.5 + 0.125): seed(seed), min(min), max(max)
explicit random_init(blt::size_t seed, Scalar min = -0.5, Scalar max = 0.5): random(seed), seed(seed), min(min), max(max)
{}
template<int rows, int columns>
inline void operator()(Eigen::Matrix<Scalar, rows, columns>& matrix) const
inline Scalar operator()(blt::i32)
{
blt::random::random_t random(seed);
for (auto r : matrix.rowwise())
{
for (auto& v : r)
v = random.get_float(min, max);
}
return static_cast<Scalar>(random.get_double(min, max));
}
private:
blt::random::random_t random;
blt::size_t seed;
float min, max;
Scalar min, max;
};
}

View File

@ -21,41 +21,109 @@
#include <blt/std/types.h>
#include <assign2/initializers.h>
#include "blt/iterator/zip.h"
#include "blt/iterator/iterator.h"
namespace assign2
{
class layer_t
class neuron_t
{
public:
layer_t(const blt::i32 in, const blt::i32 out): in_size(in), out_size(out)
// empty neuron for loading from a stream
explicit neuron_t(weight_view weights): weights(weights)
{}
template<typename WeightsFunc = empty_init, typename BiasFunc = empty_init>
void init(WeightsFunc weightFunc = empty_init{}, BiasFunc biasFunc = empty_init{})
// neuron with bias
explicit neuron_t(weight_view weights, Scalar bias): bias(bias), weights(weights)
{}
template<typename ActFunc>
Scalar activate(const Scalar* inputs, ActFunc func) const
{
weights.resize(in_size, out_size);
bias.resize(out_size);
weightFunc(weights);
biasFunc(bias);
auto sum = bias;
for (auto [x, w] : blt::zip_iterator_container({inputs, inputs + weights.size()}, {weights.begin(), weights.end()}))
sum += x * w;
return func.call(sum);
}
template<typename ActFunction>
vector_t call(const vector_t& in, ActFunction func = ActFunction{})
template<typename OStream>
OStream& serialize(OStream& stream)
{
vector_t out;
out.resize(out_size, Eigen::NoChange_t{});
out.noalias() = weights.transpose() * in;
out.colwise() += bias;
return func(std::move(out));
stream << bias;
for (auto d : weights)
stream << d;
}
template<typename IStream>
IStream& deserialize(IStream& stream)
{
for (auto& d : blt::iterate(weights).rev())
stream >> d;
stream >> bias;
}
private:
Scalar bias = 0;
weight_view weights;
};
class layer_t
{
public:
template<typename WeightFunc, typename BiasFunc>
layer_t(const blt::i32 in, const blt::i32 out, WeightFunc w, BiasFunc b): in_size(in), out_size(out)
{
neurons.reserve(out_size);
for (blt::i32 i = 0; i < out_size; i++)
{
auto weight = weights.allocate_view(in_size);
for (auto& v : weight)
v = w(i);
neurons.push_back(neuron_t{weight, b(i)});
}
}
template<typename ActFunction>
std::vector<Scalar> call(const std::vector<Scalar>& in, ActFunction func = ActFunction{})
{
std::vector<Scalar> out;
out.reserve(out_size);
#if BLT_DEBUG_LEVEL > 0
if (in.size() != in_size)
throw std::runtime_exception("Input vector doesn't match expected input size!");
#endif
for (auto& n : neurons)
out.push_back(n.activate(in.data(), func));
return out;
}
template<typename OStream>
OStream& serialize(OStream& stream)
{
for (auto d : neurons)
stream << d;
}
template<typename IStream>
IStream& deserialize(IStream& stream)
{
for (auto& d : blt::iterate(neurons).rev())
stream >> d;
}
[[nodiscard]] inline blt::i32 get_in_size() const
{
return in_size;
}
[[nodiscard]] inline blt::i32 get_out_size() const
{
return out_size;
}
private:
const blt::i32 in_size, out_size;
matrix_t weights{};
matrix_t dweights{}; // derivative of weights
vector_t bias{};
vector_t dbias{}; // derivative of bias
weight_t weights;
std::vector<neuron_t> neurons;
};
}

View File

@ -27,17 +27,98 @@ namespace assign2
class network_t
{
public:
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 hidden_count, blt::i32 hidden_size):
input_size(input_size), output_size(output_size), hidden_count(hidden_count), hidden_size(hidden_size)
template<typename WeightFunc, typename BiasFunc>
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size, WeightFunc w, BiasFunc b):
input_size(input_size), output_size(output_size), hidden_count(layer_count), hidden_size(hidden_size)
{
if (hidden_count > 0)
if (layer_count > 0)
{
layers.push_back(layer_t{input_size, hidden_size});
for (blt::i32 i = 1; i < hidden_count; i++)
layers.push_back(layer_t{hidden_size, hidden_size});
layers.push_back(layer_t{hidden_size, output_size});
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
layers.push_back(layer_t{input_size, hidden_size, w, b});
else
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
}
layers.push_back(layer_t{hidden_size, output_size, w, b});
} else
layers.push_back(layer_t{input_size, output_size});
{
layers.push_back(layer_t{input_size, output_size, w, b});
}
}
template<typename WeightFunc, typename BiasFunc, typename OutputWeightFunc, typename OutputBiasFunc>
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size,
WeightFunc w, BiasFunc b, OutputWeightFunc ow, OutputBiasFunc ob):
input_size(input_size), output_size(output_size), hidden_count(layer_count), hidden_size(hidden_size)
{
if (layer_count > 0)
{
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
layers.push_back(layer_t{input_size, hidden_size, w, b});
else
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
}
layers.push_back(layer_t{hidden_size, output_size, ow, ob});
} else
{
layers.push_back(layer_t{input_size, output_size, ow, ob});
}
}
explicit network_t(std::vector<layer_t> layers):
input_size(layers.begin()->get_in_size()), output_size(layers.end()->get_out_size()),
hidden_count(static_cast<blt::i32>(layers.size()) - 1), hidden_size(layers.end()->get_in_size()), layers(std::move(layers))
{}
network_t() = default;
template<typename ActFunc, typename ActFuncOut>
std::vector<Scalar> execute(const std::vector<Scalar>& input, ActFunc func, ActFuncOut outFunc)
{
std::vector<Scalar> previous_output;
std::vector<Scalar> current_output;
for (auto [i, v] : blt::enumerate(layers))
{
previous_output = current_output;
if (i == 0)
current_output = v.call(input, func);
else if (i == layers.size() - 1)
current_output = v.call(previous_output, outFunc);
else
current_output = v.call(previous_output, func);
}
return current_output;
}
Scalar train(const data_file_t& example)
{
const Scalar learn_rate = 0.1;
Scalar total_error = 0;
for (const auto& x : example.data_points)
{
auto o = execute(x.bins, sigmoid_function{}, sigmoid_function{});
auto y = x.is_bad ? 1.0f : 0.0f;
Scalar is_bad = 0;
if (o[0] >= 1)
is_bad = 0;
else if (o[1] >= 1)
is_bad = 1;
auto error = y - is_bad;
if (o[0] >= 1 && o[1] >= 1)
error += 1;
total_error += error;
}
return total_error;
}
private:

View File

@ -6,6 +6,7 @@
#include "blt/iterator/enumerate.h"
#include <assign2/layer.h>
#include <assign2/functions.h>
#include <assign2/network.h>
using namespace assign2;
@ -67,6 +68,18 @@ std::vector<data_file_t> load_data_files(const std::vector<std::string>& files)
return loaded_data;
}
template<typename T>
decltype(std::cout)& print_vec(const std::vector<T>& vec)
{
for (auto [i, v] : blt::enumerate(vec))
{
std::cout << v;
if (i != vec.size() - 1)
std::cout << ", ";
}
return std::cout;
}
int main(int argc, const char** argv)
{
blt::arg_parse parser;
@ -77,35 +90,29 @@ int main(int argc, const char** argv)
auto data_files = load_data_files(get_data_files(data_directory));
vector_t input;
std::vector<Scalar> input;
input.resize(16);
for (auto f : data_files)
{
if (f.data_points.begin()->bins.size() == 16)
{
for (auto [i, b] : blt::enumerate(f.data_points.begin()->bins))
input(static_cast<Eigen::Index>(i)) = b;
input[i] = b;
}
}
random_init randomizer{619};
sigmoid_function sig;
layer_t layer1{16, 4};
layer_t layer2{4, 4};
layer_t layer3{4, 4};
layer_t layer_output{4, 1};
layer1.init(randomizer, empty_init{});
layer2.init(randomizer, empty_init{});
layer3.init(randomizer, empty_init{});
layer_output.init(randomizer, empty_init{});
layer_t layer1{16, 4, randomizer, empty_init{}};
layer_t layer2{4, 4, randomizer, empty_init{}};
layer_t layer3{4, 4, randomizer, empty_init{}};
layer_t layer_output{4, 1, randomizer, empty_init{}};
auto output = layer1.call(input, sig);
output = layer2.call(output, sig);
output = layer3.call(output, sig);
output = layer_output.call(output, sig);
network_t network{{layer1, layer2, layer3, layer_output}};
std::cout << output << std::endl;
auto output = network.execute(input, sig, sig);
print_vec(output) << std::endl;
// for (auto d : data_files)
// {