main
Brett 2024-10-27 18:09:37 -04:00
parent dd313d75dd
commit 28efbf94e6
10 changed files with 589 additions and 167 deletions

View File

@ -9,5 +9,6 @@
<mapping directory="$PROJECT_DIR$/lib/blt-graphics/libraries/imgui" vcs="Git" />
<mapping directory="$PROJECT_DIR$/lib/blt-graphics/libraries/openal-soft" vcs="Git" />
<mapping directory="$PROJECT_DIR$/lib/blt/libraries/parallel-hashmap" vcs="Git" />
<mapping directory="$PROJECT_DIR$/lib/implot" vcs="Git" />
</component>
</project>

View File

@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.25)
project(COSC-4P80-Assignment-2 VERSION 0.0.7)
project(COSC-4P80-Assignment-2 VERSION 0.0.8)
option(ENABLE_ADDRSAN "Enable the address sanitizer" OFF)
option(ENABLE_UBSAN "Enable the ub sanitizer" OFF)
@ -16,6 +16,8 @@ endif()
if (ENABLE_GRAPHICS)
add_subdirectory(lib/blt-graphics)
add_compile_definitions(BLT_USE_GRAPHICS)
set(EXTRA_SOURCES lib/implot/implot.cpp lib/implot/implot_demo.cpp lib/implot/implot_items.cpp)
include_directories(lib/implot)
else ()
add_subdirectory(lib/blt)
endif ()
@ -25,7 +27,7 @@ endif ()
include_directories(include/)
file(GLOB_RECURSE PROJECT_BUILD_FILES "${CMAKE_CURRENT_SOURCE_DIR}/src/*.cpp")
add_executable(COSC-4P80-Assignment-2 ${PROJECT_BUILD_FILES})
add_executable(COSC-4P80-Assignment-2 ${PROJECT_BUILD_FILES} ${EXTRA_SOURCES})
target_compile_options(COSC-4P80-Assignment-2 PRIVATE -Wall -Wextra -Wpedantic -Wno-comment)
target_link_options(COSC-4P80-Assignment-2 PRIVATE -Wall -Wextra -Wpedantic -Wno-comment)

View File

@ -21,11 +21,21 @@
#include <iostream>
#include <blt/iterator/enumerate.h>
#include <filesystem>
#ifdef BLT_USE_GRAPHICS
#include "blt/gfx/renderer/batch_2d_renderer.h"
#include "blt/gfx/window.h"
#include <imgui.h>
#endif
namespace assign2
{
using Scalar = float;
const inline Scalar learn_rate = 0.1;
// const inline Scalar learn_rate = 0.001;
inline Scalar learn_rate = 0.001;
template<typename T>
decltype(std::cout)& print_vec(const std::vector<T>& vec)
@ -102,6 +112,22 @@ namespace assign2
class weight_t
{
public:
weight_t() = default;
weight_t(const weight_t& copy) = delete;
weight_t& operator=(const weight_t& copy) = delete;
weight_t(weight_t&& move) noexcept: place(std::exchange(move.place, 0)), data(std::move(move.data))
{}
weight_t& operator=(weight_t&& move) noexcept
{
place = std::exchange(move.place, place);
data = std::exchange(move.data, std::move(data));
return *this;
}
void preallocate(blt::size_t amount)
{
data.resize(amount);
@ -125,6 +151,82 @@ namespace assign2
std::vector<Scalar> data;
};
std::vector<std::string> get_data_files(std::string_view path)
{
std::vector<std::string> files;
for (const auto& file : std::filesystem::recursive_directory_iterator(path))
{
if (file.is_directory())
continue;
auto file_path = file.path().string();
if (blt::string::ends_with(file_path, ".out"))
files.push_back(blt::fs::getFile(file_path));
}
return files;
}
std::vector<data_file_t> load_data_files(const std::vector<std::string>& files)
{
std::vector<data_file_t> loaded_data;
// load all file
for (auto file : files)
{
// we only use unix line endings here...
blt::string::replaceAll(file, "\r", "");
auto lines = blt::string::split(file, "\n");
auto line_it = lines.begin();
auto meta = blt::string::split(*line_it, ' ');
// load data inside files
data_file_t data;
data.data_points.reserve(std::stoll(meta[0]));
auto bin_count = std::stoul(meta[1]);
for (++line_it; line_it != lines.end(); ++line_it)
{
auto line_data_meta = blt::string::split(*line_it, ' ');
if (line_data_meta.size() != bin_count + 1)
continue;
auto line_data_it = line_data_meta.begin();
// load bins
data_t line_data;
line_data.is_bad = std::stoi(*line_data_it) == 1;
line_data.bins.reserve(bin_count);
Scalar total = 0;
for (++line_data_it; line_data_it != line_data_meta.end(); ++line_data_it)
{
auto v = std::stof(*line_data_it);
total += v * v;
line_data.bins.push_back(v);
}
// normalize vector.
total = std::sqrt(total);
//
for (auto& v : line_data.bins)
v /= total;
//
// if (line_data.bins.size() == 32)
// print_vec(line_data.bins) << std::endl;
data.data_points.push_back(line_data);
}
loaded_data.push_back(data);
}
return loaded_data;
}
bool is_thinks_bad(const std::vector<Scalar>& out)
{
return out[0] < out[1];
}
}
#endif //COSC_4P80_ASSIGNMENT_2_COMMON_H

View File

@ -38,16 +38,19 @@ namespace assign2
}
};
struct threshold_function : public function_t
struct tanh_function : public function_t
{
[[nodiscard]] Scalar call(const Scalar s) const final
[[nodiscard]] Scalar call(Scalar s) const final
{
return s >= 0 ? 1 : 0;
auto x = std::exp(s);
auto nx = std::exp(-s);
return (x - nx) / (x + nx);
}
[[nodiscard]] Scalar derivative(Scalar s) const final
{
return 0;
auto tanh = std::tanh(s);
return 1 - (tanh * tanh);
}
};
@ -60,7 +63,7 @@ namespace assign2
[[nodiscard]] Scalar derivative(Scalar s) const final
{
return 0;
return s >= 0 ? 1 : 0;
}
};
}

View File

@ -0,0 +1,61 @@
#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef COSC_4P80_ASSIGNMENT_2_GLOBAL_MAGIC_H
#define COSC_4P80_ASSIGNMENT_2_GLOBAL_MAGIC_H
#include <vector>
#include <unordered_map>
#include <assign2/common.h>
#include <blt/math/vectors.h>
#include <atomic>
#include <thread>
namespace assign2
{
inline blt::size_t layer_id_counter = 0;
inline const blt::size_t distance_between_layers = 250;
inline std::atomic_bool pause_mode = true;
inline std::atomic_bool pause_flag = false;
void await()
{
if (!pause_mode.load(std::memory_order_relaxed))
return;
// wait for flag to come in
while (!pause_flag.load(std::memory_order_relaxed))
std::this_thread::sleep_for(std::chrono::milliseconds(1));
// reset the flag back to false
auto flag = pause_flag.load(std::memory_order_relaxed);
while (!pause_flag.compare_exchange_strong(flag, false, std::memory_order_relaxed))
{}
}
struct node_data
{
};
inline std::vector<Scalar> errors_over_time;
inline std::vector<Scalar> error_derivative_over_time;
inline std::vector<Scalar> correct_over_time;
inline std::vector<node_data> nodes;
}
#endif //COSC_4P80_ASSIGNMENT_2_GLOBAL_MAGIC_H

View File

@ -33,11 +33,11 @@ namespace assign2
}
};
struct half_init
struct small_init
{
inline Scalar operator()(blt::i32) const
{
return 0;
return 0.01;
}
};

View File

@ -17,13 +17,15 @@
*/
#include "blt/std/assert.h"
#ifndef COSC_4P80_ASSIGNMENT_2_LAYER_H
#define COSC_4P80_ASSIGNMENT_2_LAYER_H
#include <blt/std/types.h>
#include <assign2/initializers.h>
#include "blt/iterator/zip.h"
#include "blt/iterator/iterator.h"
#include <blt/std/types.h>
#include <assign2/initializers.h>
#include "blt/iterator/zip.h"
#include "blt/iterator/iterator.h"
#include "global_magic.h"
namespace assign2
{
@ -52,11 +54,12 @@ namespace assign2
{
// delta for weights
error = act->derivative(z) * next_error;
db = learn_rate * error;
BLT_ASSERT(previous_outputs.size() == dw.size());
for (auto [prev_out, d_weight] : blt::zip(previous_outputs, dw))
{
// dw / apply dw
d_weight = learn_rate * prev_out * error;
// dw
d_weight = -learn_rate * prev_out * error;
}
}
@ -64,6 +67,7 @@ namespace assign2
{
for (auto [w, d] : blt::in_pairs(weights, dw))
w += d;
bias += db;
}
template<typename OStream>
@ -91,6 +95,7 @@ namespace assign2
float z = 0;
float a = 0;
float bias = 0;
float db = 0;
float error = 0;
weight_view dw;
weight_view weights;
@ -102,7 +107,7 @@ namespace assign2
public:
template<typename WeightFunc, typename BiasFunc>
layer_t(const blt::i32 in, const blt::i32 out, function_t* act_func, WeightFunc w, BiasFunc b):
in_size(in), out_size(out), act_func(act_func)
in_size(in), out_size(out), layer_id(layer_id_counter++), act_func(act_func)
{
neurons.reserve(out_size);
weights.preallocate(in_size * out_size);
@ -130,38 +135,36 @@ namespace assign2
return outputs;
}
Scalar back_prop(const std::vector<Scalar>& prev_layer_output,
const std::variant<blt::ref<const std::vector<Scalar>>, blt::ref<const layer_t>>& data)
std::pair<Scalar, Scalar> back_prop(const std::vector<Scalar>& prev_layer_output,
const std::variant<blt::ref<const std::vector<Scalar>>, blt::ref<const layer_t>>& data)
{
return std::visit(blt::lambda_visitor{
Scalar total_error = 0;
Scalar total_derivative = 0;
std::visit(blt::lambda_visitor{
// is provided if we are an output layer, contains output of this net (per neuron) and the expected output (per neuron)
[this, &prev_layer_output](const std::vector<Scalar>& expected) {
Scalar total_error = 0;
[this, &prev_layer_output, &total_error, &total_derivative](const std::vector<Scalar>& expected) {
for (auto [i, n] : blt::enumerate(neurons))
{
auto d = outputs[i] - expected[i];
auto d2 = 0.5f * (d * d);
total_error += d2;
n.back_prop(act_func, prev_layer_output, d2);
total_derivative += d;
n.back_prop(act_func, prev_layer_output, d);
}
return total_error;
},
// interior layer
[this, &prev_layer_output](const layer_t& layer) {
Scalar total_error = 0;
for (auto [i, n] : blt::enumerate(neurons))
{
Scalar weight_error = 0;
Scalar w = 0;
// TODO: this is not efficient on the cache!
for (auto nn : layer.neurons)
weight_error += nn.error * nn.weights[i];
Scalar w2 = 0.5f * weight_error * weight_error;
total_error += w2;
n.back_prop(act_func, prev_layer_output, w2);
w += nn.error * nn.weights[i];
n.back_prop(act_func, prev_layer_output, w);
}
return total_error;
}
}, data);
return {total_error, total_derivative};
}
void update()
@ -203,8 +206,18 @@ namespace assign2
weights.debug();
}
#ifdef BLT_USE_GRAPHICS
void render() const
{
}
#endif
private:
const blt::i32 in_size, out_size;
const blt::size_t layer_id;
weight_t weights;
weight_t weight_derivatives;
function_t* act_func;

View File

@ -22,6 +22,7 @@
#include <assign2/common.h>
#include <assign2/layer.h>
#include "blt/std/assert.h"
#include "global_magic.h"
namespace assign2
{
@ -36,14 +37,14 @@ namespace assign2
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
layers.push_back(layer_t{input_size, hidden_size, w, b});
layers.push_back(std::make_unique<layer_t>(input_size, hidden_size, w, b));
else
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
layers.push_back(std::make_unique<layer_t>(hidden_size, hidden_size, w, b));
}
layers.push_back(layer_t{hidden_size, output_size, w, b});
layers.push_back(std::make_unique<layer_t>(hidden_size, output_size, w, b));
} else
{
layers.push_back(layer_t{input_size, output_size, w, b});
layers.push_back(std::make_unique<layer_t>(input_size, output_size, w, b));
}
}
@ -56,18 +57,18 @@ namespace assign2
for (blt::i32 i = 0; i < layer_count; i++)
{
if (i == 0)
layers.push_back(layer_t{input_size, hidden_size, w, b});
layers.push_back(std::make_unique<layer_t>(input_size, hidden_size, w, b));
else
layers.push_back(layer_t{hidden_size, hidden_size, w, b});
layers.push_back(std::make_unique<layer_t>(hidden_size, hidden_size, w, b));
}
layers.push_back(layer_t{hidden_size, output_size, ow, ob});
layers.push_back(std::make_unique<layer_t>(hidden_size, output_size, ow, ob));
} else
{
layers.push_back(layer_t{input_size, output_size, ow, ob});
layers.push_back(std::make_unique<layer_t>(input_size, output_size, ow, ob));
}
}
explicit network_t(std::vector<layer_t> layers): layers(std::move(layers))
explicit network_t(std::vector<std::unique_ptr<layer_t>> layers): layers(std::move(layers))
{}
network_t() = default;
@ -78,27 +79,12 @@ namespace assign2
outputs.emplace_back(input);
for (auto& v : layers)
outputs.emplace_back(v.call(outputs.back()));
outputs.emplace_back(v->call(outputs.back()));
return outputs.back();
}
std::pair<Scalar, Scalar> error(const std::vector<Scalar>& outputs, bool is_bad)
{
BLT_ASSERT(outputs.size() == 2);
auto g = is_bad ? 0.0f : 1.0f;
auto b = is_bad ? 1.0f : 0.0f;
auto g_diff = outputs[0] - g;
auto b_diff = outputs[1] - b;
auto error = g_diff * g_diff + b_diff * b_diff;
BLT_INFO("%f %f %f", error, g_diff, b_diff);
return {0.5f * (error * error), error};
}
Scalar train_epoch(const data_file_t& example)
std::pair<Scalar, Scalar> train_epoch(const data_file_t& example)
{
Scalar total_error = 0;
Scalar total_d_error = 0;
@ -111,28 +97,45 @@ namespace assign2
{
if (i == layers.size() - 1)
{
auto e = layer.back_prop(layers[i - 1].outputs, expected);
total_error += e;
auto e = layer->back_prop(layers[i - 1]->outputs, expected);
// layer->update();
total_error += e.first;
total_d_error += e.second;
} else if (i == 0)
{
auto e = layer.back_prop(x.bins, layers[i + 1]);
total_error += e;
auto e = layer->back_prop(x.bins, *layers[i + 1]);
// layer->update();
total_error += e.first;
total_d_error += e.second;
} else
{
auto e = layer.back_prop(layers[i - 1].outputs, layers[i + 1]);
total_error += e;
auto e = layer->back_prop(layers[i - 1]->outputs, *layers[i + 1]);
// layer->update();
total_error += e.first;
total_d_error += e.second;
}
}
for (auto& l : layers)
l.update();
l->update();
}
BLT_DEBUG("Total Errors found %f, %f", total_error, total_d_error);
// errors_over_time.push_back(total_error);
// BLT_DEBUG("Total Errors found %f, %f", total_error, total_d_error);
return total_error;
return {total_error, total_d_error};
}
#ifdef BLT_USE_GRAPHICS
void render() const
{
for (auto& l : layers)
l->render();
}
#endif
private:
std::vector<layer_t> layers;
std::vector<std::unique_ptr<layer_t>> layers;
};
}

1
lib/implot Submodule

@ -0,0 +1 @@
Subproject commit f156599faefe316f7dd20fe6c783bf87c8bb6fd9

View File

@ -7,67 +7,317 @@
#include <assign2/layer.h>
#include <assign2/functions.h>
#include <assign2/network.h>
#include <memory>
#include <thread>
using namespace assign2;
std::vector<std::string> get_data_files(std::string_view path)
std::vector<data_file_t> data_files;
random_init randomizer{619};
empty_init empty;
small_init small;
sigmoid_function sig;
relu_function relu;
tanh_function func_tanh;
network_t create_network(blt::i32 input, blt::i32 hidden)
{
std::vector<std::string> files;
auto layer1 = std::make_unique<layer_t>(input, hidden * 2, &sig, randomizer, empty);
auto layer2 = std::make_unique<layer_t>(hidden * 2, hidden / 2, &sig, randomizer, empty);
auto layer_output = std::make_unique<layer_t>(hidden / 2, 2, &sig, randomizer, empty);
for (const auto& file : std::filesystem::recursive_directory_iterator(path))
{
if (file.is_directory())
continue;
auto file_path = file.path().string();
if (blt::string::ends_with(file_path, ".out"))
files.push_back(blt::fs::getFile(file_path));
}
std::vector<std::unique_ptr<layer_t>> vec;
vec.push_back(std::move(layer1));
vec.push_back(std::move(layer2));
vec.push_back(std::move(layer_output));
return files;
return network_t{std::move(vec)};
}
std::vector<data_file_t> load_data_files(const std::vector<std::string>& files)
#ifdef BLT_USE_GRAPHICS
#include <blt/gfx/window.h>
#include "blt/gfx/renderer/resource_manager.h"
#include "blt/gfx/renderer/batch_2d_renderer.h"
#include "blt/gfx/renderer/camera.h"
#include "implot.h"
#include <imgui.h>
blt::gfx::matrix_state_manager global_matrices;
blt::gfx::resource_manager resources;
blt::gfx::batch_renderer_2d renderer_2d(resources, global_matrices);
blt::gfx::first_person_camera_2d camera;
blt::hashmap_t<blt::i32, network_t> networks;
blt::hashmap_t<blt::i32, data_file_t*> file_map;
std::unique_ptr<std::thread> network_thread;
std::atomic_bool running = true;
std::atomic_bool run_exit = true;
std::atomic_int32_t run_epoch = -1;
std::atomic_uint64_t epochs = 0;
blt::i32 time_between_runs = 0;
blt::size_t correct_recall = 0;
blt::size_t wrong_recall = 0;
bool run_network = false;
void init(const blt::gfx::window_data& data)
{
std::vector<data_file_t> loaded_data;
using namespace blt::gfx;
// load all file
for (auto file : files)
// auto monitor = glfwGetPrimaryMonitor();
// auto mode = glfwGetVideoMode(monitor);
// glfwSetWindowMonitor(data.window, monitor, 0, 0, mode->width, mode->height, mode->refreshRate);
global_matrices.create_internals();
resources.load_resources();
renderer_2d.create();
ImPlot::CreateContext();
for (auto& f : data_files)
{
// we only use unix line endings here...
blt::string::replaceAll(file, "\r", "");
auto lines = blt::string::split(file, "\n");
auto line_it = lines.begin();
auto meta = blt::string::split(*line_it, ' ');
int input = static_cast<int>(f.data_points.begin()->bins.size());
int hidden = input * 1;
// load data inside files
data_file_t data;
data.data_points.reserve(std::stoll(meta[0]));
auto bin_count = std::stoul(meta[1]);
BLT_INFO("Making network of size %d", input);
networks[input] = create_network(input, hidden);
file_map[input] = &f;
}
for (++line_it; line_it != lines.end(); ++line_it)
errors_over_time.reserve(25000);
error_derivative_over_time.reserve(25000);
correct_over_time.reserve(25000);
network_thread = std::make_unique<std::thread>([]() {
while (running)
{
auto line_data_meta = blt::string::split(*line_it, ' ');
if (line_data_meta.size() != bin_count + 1)
continue;
auto line_data_it = line_data_meta.begin();
// load bins
data_t line_data;
line_data.is_bad = std::stoi(*line_data_it) == 1;
line_data.bins.reserve(bin_count);
for (++line_data_it; line_data_it != line_data_meta.end(); ++line_data_it)
if (run_epoch >= 0)
{
line_data.bins.push_back(std::stof(*line_data_it));
auto error = networks.at(run_epoch).train_epoch(*file_map[run_epoch]);
errors_over_time.push_back(error.first);
error_derivative_over_time.push_back(error.second);
blt::size_t right = 0;
blt::size_t wrong = 0;
for (auto& d : file_map[run_epoch]->data_points)
{
auto out = networks.at(run_epoch).execute(d.bins);
auto is_bad = is_thinks_bad(out);
if ((is_bad && d.is_bad) || (!is_bad && !d.is_bad))
right++;
else
wrong++;
}
correct_recall = right;
wrong_recall = wrong;
correct_over_time.push_back(static_cast<Scalar>(right) / static_cast<Scalar>(right + wrong) * 100);
epochs++;
run_epoch = -1;
std::this_thread::sleep_for(std::chrono::milliseconds(time_between_runs));
}
data.data_points.push_back(line_data);
}
run_exit = false;
});
}
template<typename Func>
void plot_vector(ImPlotRect& lims, const std::vector<Scalar>& v, std::string name, const std::string& x, const std::string& y, Func axis_func)
{
if (lims.X.Min < 0)
lims.X.Min = 0;
if (ImPlot::BeginPlot(name.c_str()))
{
ImPlot::SetupAxes(x.c_str(), y.c_str(), ImPlotAxisFlags_None, ImPlotAxisFlags_None);
int minX = static_cast<blt::i32>(lims.X.Min);
int maxX = static_cast<blt::i32>(lims.X.Max);
if (minX < 0)
minX = 0;
if (minX >= static_cast<blt::i32>(v.size()))
minX = static_cast<blt::i32>(v.size()) - 1;
if (maxX < 0)
maxX = 0;
if (maxX >= static_cast<blt::i32>(v.size()))
maxX = static_cast<blt::i32>(v.size()) - 1;
if (static_cast<blt::i32>(v.size()) > 0)
{
auto min = v[minX];
auto max = v[minX];
for (int i = minX; i < maxX; i++)
{
auto val = v[i];
if (val < min)
min = val;
if (val > max)
max = val;
}
ImPlot::SetupAxisLimits(ImAxis_Y1, axis_func(min, true), axis_func(max, false), ImGuiCond_Always);
}
loaded_data.push_back(data);
name = "##" + name;
ImPlot::SetupAxisLinks(ImAxis_X1, &lims.X.Min, &lims.X.Max);
ImPlot::PlotLine(name.c_str(), v.data(), static_cast<int>(v.size()), 1, 0, ImPlotLineFlags_Shaded);
ImPlot::EndPlot();
}
return loaded_data;
}
void update(const blt::gfx::window_data& data)
{
global_matrices.update_perspectives(data.width, data.height, 90, 0.1, 2000);
camera.update();
camera.update_view(global_matrices);
global_matrices.update();
ImGui::ShowDemoWindow();
ImPlot::ShowDemoWindow();
auto net = networks.begin();
if (ImGui::Begin("Control", nullptr))
{
static std::vector<std::unique_ptr<const char>> owner;
static std::vector<const char*> lists;
if (lists.empty())
{
for (auto& n : networks)
{
auto str = std::to_string(n.first);
char* ptr = new char[str.size() + 1];
owner.push_back(std::unique_ptr<const char>(ptr));
std::memcpy(ptr, str.data(), str.size());
ptr[str.size()] = '\0';
lists.push_back(ptr);
}
}
static int selected = 1;
for (int i = 0; i < selected; i++)
net++;
ImGui::Separator();
ImGui::Text("Select Network Size");
if (ImGui::ListBox("", &selected, lists.data(), static_cast<int>(lists.size()), 4))
{
errors_over_time.clear();
correct_over_time.clear();
error_derivative_over_time.clear();
run_network = false;
}
ImGui::Separator();
ImGui::Text("Using network %d size %d", selected, net->first);
static bool pause = pause_mode.load();
ImGui::Checkbox("Stepped Mode", &pause);
pause_mode = pause;
ImGui::Checkbox("Train Network", &run_network);
if (run_network)
run_epoch = net->first;
ImGui::InputInt("Time Between Runs", &time_between_runs);
if (time_between_runs < 0)
time_between_runs = 0;
std::string str = std::to_string(correct_recall) + "/" + std::to_string(wrong_recall + correct_recall);
ImGui::ProgressBar(
(wrong_recall + correct_recall != 0) ? static_cast<float>(correct_recall) / static_cast<float>(wrong_recall + correct_recall) : 0,
ImVec2(0, 0), str.c_str());
// const float max_learn = 100000;
// static float learn = max_learn;
// ImGui::SliderFloat("Learn Rate", &learn, 1, max_learn, "", ImGuiSliderFlags_Logarithmic);
// learn_rate = learn / (max_learn * 1000);
ImGui::Text("Learn Rate %.9f", learn_rate);
if (ImGui::Button("Print Current"))
{
BLT_INFO("Test Cases:");
blt::size_t right = 0;
blt::size_t wrong = 0;
for (auto& d : file_map[net->first]->data_points)
{
std::cout << "Good or bad? " << (d.is_bad ? "Bad" : "Good") << " :: ";
auto out = net->second.execute(d.bins);
auto is_bad = is_thinks_bad(out);
if ((is_bad && d.is_bad) || (!is_bad && !d.is_bad))
right++;
else
wrong++;
std::cout << "NN Thinks: " << (is_bad ? "Bad" : "Good") << " || Outs: [";
print_vec(out) << "]" << std::endl;
}
BLT_INFO("NN got %ld right and %ld wrong (%%%lf)", right, wrong, static_cast<double>(right) / static_cast<double>(right + wrong) * 100);
}
}
ImGui::End();
if (ImGui::Begin("Stats"))
{
static std::vector<int> x_points;
if (errors_over_time.size() != x_points.size())
{
x_points.clear();
for (int i = 0; i < static_cast<int>(errors_over_time.size()); i++)
x_points.push_back(i);
}
auto domain = static_cast<int>(errors_over_time.size());
blt::i32 history = std::min(100, domain);
static ImPlotRect lims(0, 100, 0, 1);
if (ImPlot::BeginAlignedPlots("AlignedGroup"))
{
plot_vector(lims, errors_over_time, "Error", "Time", "Error", [](auto v, bool b) {
float percent = 0.15;
if (b)
return v < 0 ? v * (1 + percent) : v * (1 - percent);
else
return v < 0 ? v * (1 - percent) : v * (1 + percent);
});
plot_vector(lims, correct_over_time, "Correct", "Time", "Correct", [](auto v, bool b) {
if (b)
return v - 1;
else
return v + 1;
});
plot_vector(lims, error_derivative_over_time, "DError/Dw", "Time", "Error", [](auto v, bool b) {
float percent = 0.05;
if (b)
return v < 0 ? v * (1 + percent) : v * (1 - percent);
else
return v < 0 ? v * (1 - percent) : v * (1 + percent);
});
ImPlot::EndAlignedPlots();
}
}
ImGui::End();
ImGui::Begin("Hello", nullptr,
ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoBackground | ImGuiWindowFlags_NoCollapse | ImGuiWindowFlags_NoInputs |
ImGuiWindowFlags_NoTitleBar);
net->second.render();
ImGui::End();
renderer_2d.render(data.width, data.height);
}
void destroy()
{
running = false;
while (run_exit)
{
if (pause_mode)
pause_flag = true;
}
if (network_thread->joinable())
network_thread->join();
network_thread = nullptr;
networks.clear();
file_map.clear();
ImPlot::DestroyContext();
global_matrices.cleanup();
resources.cleanup();
renderer_2d.cleanup();
blt::gfx::cleanup();
}
#endif
int main(int argc, const char** argv)
{
blt::arg_parse parser;
@ -76,66 +326,52 @@ int main(int argc, const char** argv)
auto args = parser.parse_args(argc, argv);
std::string data_directory = blt::string::ensure_ends_with_path_separator(args.get<std::string>("file"));
auto data_files = load_data_files(get_data_files(data_directory));
data_files = load_data_files(get_data_files(data_directory));
random_init randomizer{619};
empty_init empty;
sigmoid_function sig;
relu_function relu;
threshold_function thresh;
layer_t layer1{16, 16, &sig, randomizer, empty};
layer1.debug();
layer_t layer2{16, 16, &sig, randomizer, empty};
layer2.debug();
layer_t layer3{16, 16, &sig, randomizer, empty};
layer3.debug();
layer_t layer_output{16, 2, &sig, randomizer, empty};
layer_output.debug();
network_t network{{layer1, layer2, layer3, layer_output}};
#ifdef BLT_USE_GRAPHICS
blt::gfx::init(blt::gfx::window_data{"Freeplay Graphics", init, update, 1440, 720}.setSyncInterval(1).setMonitor(glfwGetPrimaryMonitor())
.setMaximized(true));
destroy();
return 0;
#endif
for (auto f : data_files)
{
if (f.data_points.begin()->bins.size() == 16)
int input = static_cast<int>(f.data_points.begin()->bins.size());
int hidden = input * 3;
if (input != 64)
continue;
BLT_INFO("-----------------");
BLT_INFO("Running for size %d", input);
BLT_INFO("With hidden layers %d", input);
BLT_INFO("-----------------");
network_t network = create_network(input, hidden);
for (blt::size_t i = 0; i < 2000; i++)
network.train_epoch(f);
BLT_INFO("Test Cases:");
blt::size_t right = 0;
blt::size_t wrong = 0;
for (auto& d : f.data_points)
{
for (blt::size_t i = 0; i < 10; i++)
{
network.train_epoch(f);
}
break;
std::cout << "Good or bad? " << (d.is_bad ? "Bad" : "Good") << " :: ";
auto out = network.execute(d.bins);
auto is_bad = is_thinks_bad(out);
if ((is_bad && d.is_bad) || (!is_bad && !d.is_bad))
right++;
else
wrong++;
std::cout << "NN Thinks: " << (is_bad ? "Bad" : "Good") << " || Outs: [";
print_vec(out) << "]" << std::endl;
}
BLT_INFO("NN got %ld right and %ld wrong (%%%lf)", right, wrong, static_cast<double>(right) / static_cast<double>(right + wrong) * 100);
}
BLT_INFO("Test Cases:");
for (auto f : data_files)
{
if (f.data_points.begin()->bins.size() == 16)
{
for (auto& d : f.data_points)
{
std::cout << "Good or bad? " << d.is_bad << " :: ";
print_vec(network.execute(d.bins)) << std::endl;
}
}
}
// for (auto d : data_files)
// {
// BLT_TRACE_STREAM << "\nSilly new file:\n";
// for (auto point : d.data_points)
// {
// BLT_TRACE_STREAM << "Is bad? " << (point.is_bad ? "True" : "False") << " [";
// for (auto [i, bin] : blt::enumerate(point.bins))
// {
// BLT_TRACE_STREAM << bin;
// if (i != point.bins.size()-1)
// BLT_TRACE_STREAM << ", ";
// }
// BLT_TRACE_STREAM << "]\n";
// }
// }
std::cout << "Hello World!" << std::endl;
}