#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef COSC_4P80_ASSIGNMENT_2_NETWORK_H #define COSC_4P80_ASSIGNMENT_2_NETWORK_H #include #include #include "blt/std/assert.h" #include "global_magic.h" namespace assign2 { class network_t { public: template network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size, WeightFunc w, BiasFunc b) { if (layer_count > 0) { for (blt::i32 i = 0; i < layer_count; i++) { if (i == 0) layers.push_back(std::make_unique(input_size, hidden_size, w, b)); else layers.push_back(std::make_unique(hidden_size, hidden_size, w, b)); } layers.push_back(std::make_unique(hidden_size, output_size, w, b)); } else { layers.push_back(std::make_unique(input_size, output_size, w, b)); } } template network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size, WeightFunc w, BiasFunc b, OutputWeightFunc ow, OutputBiasFunc ob) { if (layer_count > 0) { for (blt::i32 i = 0; i < layer_count; i++) { if (i == 0) layers.push_back(std::make_unique(input_size, hidden_size, w, b)); else layers.push_back(std::make_unique(hidden_size, hidden_size, w, b)); } layers.push_back(std::make_unique(hidden_size, output_size, ow, ob)); } else { layers.push_back(std::make_unique(input_size, output_size, ow, ob)); } } explicit network_t(std::vector> layers): layers(std::move(layers)) {} network_t() = default; const std::vector& execute(const std::vector& input) { std::vector>> outputs; outputs.emplace_back(input); for (auto [i, v] : blt::enumerate(layers)) outputs.emplace_back(v->call(outputs.back())); return outputs.back(); } error_data_t error(const data_file_t& data) { Scalar total_error = 0; Scalar total_d_error = 0; for (auto& d : data.data_points) { std::vector expected{d.is_bad ? 0.0f : 1.0f, d.is_bad ? 1.0f : 0.0f}; auto out = execute(d.bins); BLT_ASSERT(out.size() == expected.size()); for (auto [o, e] : blt::in_pairs(out, expected)) { auto d_error = o - e; auto error = 0.5f * (d_error * d_error); total_error += error; total_d_error += d_error; } } return {total_error / static_cast(data.data_points.size()), total_d_error / static_cast(data.data_points.size())}; } error_data_t train(const data_t& data, bool reset) { error_data_t error = {0, 0}; execute(data.bins); std::vector expected{data.is_bad ? 0.0f : 1.0f, data.is_bad ? 1.0f : 0.0f}; for (auto [i, layer] : blt::iterate(layers).enumerate().rev()) { if (i == layers.size() - 1) { error += layer->back_prop(layers[i - 1]->outputs, expected); } else if (i == 0) { error += layer->back_prop(data.bins, *layers[i + 1]); } else { error += layer->back_prop(layers[i - 1]->outputs, *layers[i + 1]); } } for (auto& l : layers) l->update(m_omega, reset); // BLT_TRACE("Error for input: %f, derr: %f", error.error, error.d_error); return error; } error_data_t train_epoch(const data_file_t& example, blt::i32 trains_per_data = 1) { error_data_t error{0, 0}; for (const auto& x : example.data_points) { for (blt::i32 i = 0; i < trains_per_data; i++) error += train(x, reset_next); } // take the average cost over all the training. error.d_error /= static_cast(example.data_points.size() * trains_per_data); error.error /= static_cast(example.data_points.size() * trains_per_data); // as long as we are reducing error in the same direction in overall terms, we should still build momentum. auto last_sign = last_d_error >= 0; auto cur_sign = error.d_error >= 0; last_d_error = error.d_error; reset_next = last_sign != cur_sign; return error; } void with_momentum(Scalar* omega) { m_omega = omega; } #ifdef BLT_USE_GRAPHICS void render(blt::gfx::batch_renderer_2d& renderer) const { for (auto& l : layers) l->render(renderer); } #endif private: // pointer so it can be changed from the UI Scalar* m_omega = nullptr; Scalar last_d_error = 0; bool reset_next = false; std::vector> layers; }; } #endif //COSC_4P80_ASSIGNMENT_2_NETWORK_H