// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template<typename MatrixType> void diagonal(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols); Scalar s1 = internal::random<Scalar>(); //check diagonal() VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); m2.diagonal() = 2 * m1.diagonal(); m2.diagonal()[0] *= 3; if (rows>2) { enum { N1 = MatrixType::RowsAtCompileTime>2 ? 2 : 0, N2 = MatrixType::RowsAtCompileTime>1 ? -1 : 0 }; // check sub/super diagonal if(MatrixType::SizeAtCompileTime!=Dynamic) { VERIFY(m1.template diagonal<N1>().RowsAtCompileTime == m1.diagonal(N1).size()); VERIFY(m1.template diagonal<N2>().RowsAtCompileTime == m1.diagonal(N2).size()); } m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>(); VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1)); m2.template diagonal<N1>()[0] *= 3; VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]); m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>(); m2.template diagonal<N2>()[0] *= 3; VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]); m2.diagonal(N1) = 2 * m1.diagonal(N1); VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1)); m2.diagonal(N1)[0] *= 3; VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]); m2.diagonal(N2) = 2 * m1.diagonal(N2); VERIFY_IS_APPROX(m2.template diagonal<N2>(), static_cast<Scalar>(2) * m1.diagonal(N2)); m2.diagonal(N2)[0] *= 3; VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]); m2.diagonal(N2).x() = s1; VERIFY_IS_APPROX(m2.diagonal(N2).x(), s1); m2.diagonal(N2).coeffRef(0) = Scalar(2)*s1; VERIFY_IS_APPROX(m2.diagonal(N2).coeff(0), Scalar(2)*s1); } VERIFY( m1.diagonal( cols).size()==0 ); VERIFY( m1.diagonal(-rows).size()==0 ); } template<typename MatrixType> void diagonal_assert(const MatrixType& m) { Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols); if (rows>=2 && cols>=2) { VERIFY_RAISES_ASSERT( m1 += m1.diagonal() ); VERIFY_RAISES_ASSERT( m1 -= m1.diagonal() ); VERIFY_RAISES_ASSERT( m1.array() *= m1.diagonal().array() ); VERIFY_RAISES_ASSERT( m1.array() /= m1.diagonal().array() ); } VERIFY_RAISES_ASSERT( m1.diagonal(cols+1) ); VERIFY_RAISES_ASSERT( m1.diagonal(-(rows+1)) ); } EIGEN_DECLARE_TEST(diagonal) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( diagonal(Matrix<float, 4, 9>()) ); CALL_SUBTEST_1( diagonal(Matrix<float, 7, 3>()) ); CALL_SUBTEST_2( diagonal(Matrix4d()) ); CALL_SUBTEST_2( diagonal(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( diagonal(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( diagonal(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_1( diagonal(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) ); CALL_SUBTEST_1( diagonal_assert(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); } }