COSC-4P80-Assignment-2/include/assign2/layer.h

279 lines
11 KiB
C++

#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "blt/std/assert.h"
#ifndef COSC_4P80_ASSIGNMENT_2_LAYER_H
#define COSC_4P80_ASSIGNMENT_2_LAYER_H
#include <blt/std/types.h>
#include <assign2/initializers.h>
#include "blt/iterator/zip.h"
#include "blt/iterator/iterator.h"
#include "global_magic.h"
namespace assign2
{
class neuron_t
{
friend layer_t;
public:
// empty neuron for loading from a stream
// explicit neuron_t(weight_view weights, weight_view dw): dw(dw), weights(weights)
// {}
// neuron with bias
explicit neuron_t(weight_view weights, weight_view dw, weight_view momentum, Scalar bias):
bias(bias), dw(dw), weights(weights), momentum(momentum)
{}
Scalar activate(const std::vector<Scalar>& inputs, function_t* act_func)
{
BLT_ASSERT_MSG(inputs.size() == weights.size(), (std::to_string(inputs.size()) + " vs " + std::to_string(weights.size())).c_str());
z = bias;
for (auto [x, w] : blt::zip_iterator_container({inputs.begin(), inputs.end()}, {weights.begin(), weights.end()}))
z += x * w;
a = act_func->call(z);
return a;
}
void back_prop(function_t* act, const std::vector<Scalar>& previous_outputs, Scalar next_error)
{
// delta for weights
error = act->derivative(z) * next_error;
db = -learn_rate * error;
BLT_ASSERT(previous_outputs.size() == dw.size());
for (auto [prev_out, d_weight] : blt::zip(previous_outputs, dw))
{
// dw
d_weight = learn_rate * prev_out * error;
}
}
void update(float omega, bool reset)
{
// if omega is zero we are not using momentum.
if (omega == 0)
{
// BLT_TRACE("Momentum Reset");
// for (auto& v : momentum)
// std::cout << v << ',';
// std::cout << std::endl;
for (auto& m : momentum)
m = 0;
} else
{
for (auto [m, d] : blt::in_pairs(momentum, dw))
m += omega * d;
}
for (auto [w, m, d] : blt::zip(weights, momentum, dw))
w += m + d;
bias += db;
}
template<typename OStream>
OStream& serialize(OStream& stream)
{
stream << bias;
for (auto d : weights)
stream << d;
}
template<typename IStream>
IStream& deserialize(IStream& stream)
{
for (auto& d : blt::iterate(weights).rev())
stream >> d;
stream >> bias;
}
void debug() const
{
std::cout << bias << " ";
}
private:
float z = 0;
float a = 0;
float bias = 0;
float db = 0;
float error = 0;
weight_view dw;
weight_view weights;
weight_view momentum;
};
class layer_t
{
friend network_t;
public:
template<typename WeightFunc, typename BiasFunc>
layer_t(const blt::i32 in, const blt::i32 out, function_t* act_func, WeightFunc w, BiasFunc b):
in_size(in), out_size(out), layer_id(layer_id_counter++), act_func(act_func)
{
neurons.reserve(out_size);
weights.preallocate(in_size * out_size);
weight_derivatives.preallocate(in_size * out_size);
momentum.preallocate(in_size * out_size);
for (blt::i32 i = 0; i < out_size; i++)
{
auto weight = weights.allocate_view(in_size);
auto dw = weight_derivatives.allocate_view(in_size);
auto m = momentum.allocate_view(in_size);
for (auto& v : weight)
v = w(i);
neurons.push_back(neuron_t{weight, dw, m, b(i)});
}
}
const std::vector<Scalar>& call(const std::vector<Scalar>& in)
{
outputs.clear();
outputs.reserve(out_size);
#if BLT_DEBUG_LEVEL > 0
if (in.size() != in_size)
throw std::runtime_exception("Input vector doesn't match expected input size!");
#endif
for (auto& n : neurons)
outputs.push_back(n.activate(in, act_func));
return outputs;
}
error_data_t back_prop(const std::vector<Scalar>& prev_layer_output,
const std::variant<blt::ref<const std::vector<Scalar>>, blt::ref<const layer_t>>& data)
{
Scalar total_error = 0;
Scalar total_derivative = 0;
std::visit(blt::lambda_visitor{
// is provided if we are an output layer, contains output of this net (per neuron) and the expected output (per neuron)
[this, &prev_layer_output, &total_error, &total_derivative](const std::vector<Scalar>& expected) {
for (auto [i, n] : blt::enumerate(neurons))
{
auto d = expected[i] - outputs[i];
// if (outputs[0] > 0.3 && outputs[1] > 0.3)
// d *= 10 * (outputs[0] + outputs[1]);
auto d2 = 0.5f * (d * d);
// according to the slides and the 3b1b video we sum on the squared error
// not sure why on the slides the 1/2 is moved outside the sum as the cost function is defined (1/2) * (o - y)^2
// and that the total cost for an input pattern is the sum of costs on the output
total_error += d2;
total_derivative += d;
n.back_prop(act_func, prev_layer_output, d);
}
},
// interior layer
[this, &prev_layer_output](const layer_t& layer) {
for (auto [i, n] : blt::enumerate(neurons))
{
// TODO: this is not efficient on the cache!
Scalar w = 0;
for (auto nn : layer.neurons)
w += nn.error * nn.weights[i];
n.back_prop(act_func, prev_layer_output, w);
}
}
}, data);
return {total_error, total_derivative};
}
void update(const float* omega, bool reset)
{
for (auto& n : neurons)
n.update(omega == nullptr ? 0 : *omega, reset);
}
template<typename OStream>
OStream& serialize(OStream& stream)
{
for (auto d : neurons)
stream << d;
}
template<typename IStream>
IStream& deserialize(IStream& stream)
{
for (auto& d : blt::iterate(neurons).rev())
stream >> d;
}
[[nodiscard]] inline blt::i32 get_in_size() const
{
return in_size;
}
[[nodiscard]] inline blt::i32 get_out_size() const
{
return out_size;
}
void debug() const
{
std::cout << "Bias: ";
for (auto& v : neurons)
v.debug();
std::cout << std::endl;
weights.debug();
}
#ifdef BLT_USE_GRAPHICS
void render(blt::gfx::batch_renderer_2d& renderer) const
{
const blt::size_t distance_between_layers = 30;
const float neuron_size = 30;
const float padding = -5;
for (const auto& [i, n] : blt::enumerate(neurons))
{
auto color = std::abs(n.a);
renderer.drawPointInternal(blt::make_color(0.1, 0.1, 0.1),
blt::gfx::point2d_t{static_cast<float>(i) * (neuron_size + padding) + neuron_size,
static_cast<float>(layer_id * distance_between_layers) + neuron_size,
neuron_size / 2}, 10);
auto outline_size = neuron_size + 10;
renderer.drawPointInternal(blt::make_color(color, color, color),
blt::gfx::point2d_t{static_cast<float>(i) * (neuron_size + padding) + neuron_size,
static_cast<float>(layer_id * distance_between_layers) + neuron_size,
outline_size / 2}, 0);
// const ImVec2 alignment = ImVec2(0.5f, 0.5f);
// if (i > 0)
// ImGui::SameLine();
// ImGui::PushStyleVar(ImGuiStyleVar_SelectableTextAlign, alignment);
// std::string name;
// name = std::to_string(n.a);
// ImGui::Selectable(name.c_str(), false, ImGuiSelectableFlags_None, ImVec2(80, 80));
// ImGui::PopStyleVar();
}
}
#endif
private:
const blt::i32 in_size, out_size;
const blt::size_t layer_id;
weight_t weights;
weight_t weight_derivatives;
weight_t momentum;
function_t* act_func;
std::vector<neuron_t> neurons;
std::vector<Scalar> outputs;
};
}
#endif //COSC_4P80_ASSIGNMENT_2_LAYER_H