182 lines
7.2 KiB
C++
182 lines
7.2 KiB
C++
#pragma once
|
|
/*
|
|
* Copyright (C) 2024 Brett Terpstra
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef COSC_4P80_ASSIGNMENT_2_NETWORK_H
|
|
#define COSC_4P80_ASSIGNMENT_2_NETWORK_H
|
|
|
|
#include <assign2/common.h>
|
|
#include <assign2/layer.h>
|
|
#include "blt/std/assert.h"
|
|
#include "global_magic.h"
|
|
|
|
namespace assign2
|
|
{
|
|
class network_t
|
|
{
|
|
public:
|
|
template<typename WeightFunc, typename BiasFunc>
|
|
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size, WeightFunc w, BiasFunc b)
|
|
{
|
|
if (layer_count > 0)
|
|
{
|
|
for (blt::i32 i = 0; i < layer_count; i++)
|
|
{
|
|
if (i == 0)
|
|
layers.push_back(std::make_unique<layer_t>(input_size, hidden_size, w, b));
|
|
else
|
|
layers.push_back(std::make_unique<layer_t>(hidden_size, hidden_size, w, b));
|
|
}
|
|
layers.push_back(std::make_unique<layer_t>(hidden_size, output_size, w, b));
|
|
} else
|
|
{
|
|
layers.push_back(std::make_unique<layer_t>(input_size, output_size, w, b));
|
|
}
|
|
}
|
|
|
|
template<typename WeightFunc, typename BiasFunc, typename OutputWeightFunc, typename OutputBiasFunc>
|
|
network_t(blt::i32 input_size, blt::i32 output_size, blt::i32 layer_count, blt::i32 hidden_size,
|
|
WeightFunc w, BiasFunc b, OutputWeightFunc ow, OutputBiasFunc ob)
|
|
{
|
|
if (layer_count > 0)
|
|
{
|
|
for (blt::i32 i = 0; i < layer_count; i++)
|
|
{
|
|
if (i == 0)
|
|
layers.push_back(std::make_unique<layer_t>(input_size, hidden_size, w, b));
|
|
else
|
|
layers.push_back(std::make_unique<layer_t>(hidden_size, hidden_size, w, b));
|
|
}
|
|
layers.push_back(std::make_unique<layer_t>(hidden_size, output_size, ow, ob));
|
|
} else
|
|
{
|
|
layers.push_back(std::make_unique<layer_t>(input_size, output_size, ow, ob));
|
|
}
|
|
}
|
|
|
|
explicit network_t(std::vector<std::unique_ptr<layer_t>> layers): layers(std::move(layers))
|
|
{}
|
|
|
|
network_t() = default;
|
|
|
|
const std::vector<Scalar>& execute(const std::vector<Scalar>& input)
|
|
{
|
|
std::vector<blt::ref<const std::vector<Scalar>>> outputs;
|
|
outputs.emplace_back(input);
|
|
|
|
for (auto [i, v] : blt::enumerate(layers))
|
|
outputs.emplace_back(v->call(outputs.back()));
|
|
|
|
return outputs.back();
|
|
}
|
|
|
|
error_data_t error(const data_file_t& data)
|
|
{
|
|
Scalar total_error = 0;
|
|
Scalar total_d_error = 0;
|
|
|
|
for (auto& d : data.data_points)
|
|
{
|
|
std::vector<Scalar> expected{d.is_bad ? 0.0f : 1.0f, d.is_bad ? 1.0f : 0.0f};
|
|
|
|
auto out = execute(d.bins);
|
|
|
|
BLT_ASSERT(out.size() == expected.size());
|
|
for (auto [o, e] : blt::in_pairs(out, expected))
|
|
{
|
|
auto d_error = e - o;
|
|
|
|
auto error = 0.5f * (d_error * d_error);
|
|
|
|
total_error += error;
|
|
total_d_error += d_error;
|
|
}
|
|
}
|
|
|
|
return {total_error / static_cast<Scalar>(data.data_points.size()), total_d_error / static_cast<Scalar>(data.data_points.size())};
|
|
}
|
|
|
|
error_data_t train(const data_t& data, bool reset)
|
|
{
|
|
error_data_t error = {0, 0};
|
|
execute(data.bins);
|
|
std::vector<Scalar> expected{data.is_bad ? 0.0f : 1.0f, data.is_bad ? 1.0f : 0.0f};
|
|
|
|
for (auto [i, layer] : blt::iterate(layers).enumerate().rev())
|
|
{
|
|
if (i == layers.size() - 1)
|
|
{
|
|
error += layer->back_prop(layers[i - 1]->outputs, expected);
|
|
} else if (i == 0)
|
|
{
|
|
error += layer->back_prop(data.bins, *layers[i + 1]);
|
|
} else
|
|
{
|
|
error += layer->back_prop(layers[i - 1]->outputs, *layers[i + 1]);
|
|
}
|
|
}
|
|
for (auto& l : layers)
|
|
l->update(m_omega, reset);
|
|
// BLT_TRACE("Error for input: %f, derr: %f", error.error, error.d_error);
|
|
return error;
|
|
}
|
|
|
|
error_data_t train_epoch(const data_file_t& example, blt::i32 trains_per_data = 1)
|
|
{
|
|
error_data_t error{0, 0};
|
|
for (const auto& x : example.data_points)
|
|
{
|
|
for (blt::i32 i = 0; i < trains_per_data; i++)
|
|
error += train(x, reset_next);
|
|
}
|
|
// take the average cost over all the training.
|
|
error.d_error /= static_cast<Scalar>(example.data_points.size() * trains_per_data);
|
|
error.error /= static_cast<Scalar>(example.data_points.size() * trains_per_data);
|
|
// as long as we are reducing error in the same direction in overall terms, we should still build momentum.
|
|
auto last_sign = last_d_error >= 0;
|
|
auto cur_sign = error.d_error >= 0;
|
|
last_d_error = error.d_error;
|
|
reset_next = last_sign != cur_sign;
|
|
return error;
|
|
}
|
|
|
|
void with_momentum(Scalar* omega)
|
|
{
|
|
m_omega = omega;
|
|
}
|
|
|
|
#ifdef BLT_USE_GRAPHICS
|
|
|
|
void render(blt::gfx::batch_renderer_2d& renderer) const
|
|
{
|
|
for (auto& l : layers)
|
|
l->render(renderer);
|
|
}
|
|
|
|
#endif
|
|
|
|
private:
|
|
// pointer so it can be changed from the UI
|
|
Scalar* m_omega = nullptr;
|
|
Scalar last_d_error = 0;
|
|
bool reset_next = false;
|
|
std::vector<std::unique_ptr<layer_t>> layers;
|
|
};
|
|
}
|
|
|
|
#endif //COSC_4P80_ASSIGNMENT_2_NETWORK_H
|