COSC-4P80-Assignment-2/lib/eigen-3.4.0/doc/UsingBlasLapackBackends.dox

134 lines
6.5 KiB
Plaintext

/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Copyright (C) 2011-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Documentation on the use of BLAS/LAPACK libraries through Eigen
********************************************************************************
*/
namespace Eigen {
/** \page TopicUsingBlasLapack Using BLAS/LAPACK from %Eigen
Since %Eigen version 3.3 and later, any F77 compatible BLAS or LAPACK libraries can be used as backends for dense matrix products and dense matrix decompositions.
For instance, one can use <a href="http://eigen.tuxfamily.org/Counter/redirect_to_mkl.php">Intel® MKL</a>, Apple's Accelerate framework on OSX, <a href="http://www.openblas.net/">OpenBLAS</a>, <a href="http://www.netlib.org/lapack">Netlib LAPACK</a>, etc.
Do not miss this \link TopicUsingIntelMKL page \endlink for further discussions on the specific use of Intel® MKL (also includes VML, PARDISO, etc.)
In order to use an external BLAS and/or LAPACK library, you must link you own application to the respective libraries and their dependencies.
For LAPACK, you must also link to the standard <a href="http://www.netlib.org/lapack/lapacke.html">Lapacke</a> library, which is used as a convenient think layer between %Eigen's C++ code and LAPACK F77 interface. Then you must activate their usage by defining one or multiple of the following macros (\b before including any %Eigen's header):
\note For Mac users, in order to use the lapack version shipped with the Accelerate framework, you also need the lapacke library.
Using <a href="https://www.macports.org/">MacPorts</a>, this is as easy as:
\code
sudo port install lapack
\endcode
and then use the following link flags: \c -framework \c Accelerate \c /opt/local/lib/lapack/liblapacke.dylib
<table class="manual">
<tr><td>\c EIGEN_USE_BLAS </td><td>Enables the use of external BLAS level 2 and 3 routines (compatible with any F77 BLAS interface)</td></tr>
<tr class="alt"><td>\c EIGEN_USE_LAPACKE </td><td>Enables the use of external Lapack routines via the <a href="http://www.netlib.org/lapack/lapacke.html">Lapacke</a> C interface to Lapack (compatible with any F77 LAPACK interface)</td></tr>
<tr><td>\c EIGEN_USE_LAPACKE_STRICT </td><td>Same as \c EIGEN_USE_LAPACKE but algorithms of lower numerical robustness are disabled. \n This currently concerns only JacobiSVD which otherwise would be replaced by \c gesvd that is less robust than Jacobi rotations.</td></tr>
</table>
When doing so, a number of %Eigen's algorithms are silently substituted with calls to BLAS or LAPACK routines.
These substitutions apply only for \b Dynamic \b or \b large enough objects with one of the following four standard scalar types: \c float, \c double, \c complex<float>, and \c complex<double>.
Operations on other scalar types or mixing reals and complexes will continue to use the built-in algorithms.
The breadth of %Eigen functionality that can be substituted is listed in the table below.
<table class="manual">
<tr><th>Functional domain</th><th>Code example</th><th>BLAS/LAPACK routines</th></tr>
<tr><td>Matrix-matrix operations \n \c EIGEN_USE_BLAS </td><td>\code
m1*m2.transpose();
m1.selfadjointView<Lower>()*m2;
m1*m2.triangularView<Upper>();
m1.selfadjointView<Lower>().rankUpdate(m2,1.0);
\endcode</td><td>\code
?gemm
?symm/?hemm
?trmm
dsyrk/ssyrk
\endcode</td></tr>
<tr class="alt"><td>Matrix-vector operations \n \c EIGEN_USE_BLAS </td><td>\code
m1.adjoint()*b;
m1.selfadjointView<Lower>()*b;
m1.triangularView<Upper>()*b;
\endcode</td><td>\code
?gemv
?symv/?hemv
?trmv
\endcode</td></tr>
<tr><td>LU decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
v1 = m1.lu().solve(v2);
\endcode</td><td>\code
?getrf
\endcode</td></tr>
<tr class="alt"><td>Cholesky decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
v1 = m2.selfadjointView<Upper>().llt().solve(v2);
\endcode</td><td>\code
?potrf
\endcode</td></tr>
<tr><td>QR decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
m1.householderQr();
m1.colPivHouseholderQr();
\endcode</td><td>\code
?geqrf
?geqp3
\endcode</td></tr>
<tr class="alt"><td>Singular value decomposition \n \c EIGEN_USE_LAPACKE </td><td>\code
JacobiSVD<MatrixXd> svd;
svd.compute(m1, ComputeThinV);
\endcode</td><td>\code
?gesvd
\endcode</td></tr>
<tr><td>Eigen-value decompositions \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
EigenSolver<MatrixXd> es(m1);
ComplexEigenSolver<MatrixXcd> ces(m1);
SelfAdjointEigenSolver<MatrixXd> saes(m1+m1.transpose());
GeneralizedSelfAdjointEigenSolver<MatrixXd>
gsaes(m1+m1.transpose(),m2+m2.transpose());
\endcode</td><td>\code
?gees
?gees
?syev/?heev
?syev/?heev,
?potrf
\endcode</td></tr>
<tr class="alt"><td>Schur decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
RealSchur<MatrixXd> schurR(m1);
ComplexSchur<MatrixXcd> schurC(m1);
\endcode</td><td>\code
?gees
\endcode</td></tr>
</table>
In the examples, m1 and m2 are dense matrices and v1 and v2 are dense vectors.
*/
}