178 lines
4.6 KiB
C++
178 lines
4.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#if EIGEN_MAX_ALIGN_BYTES>0
|
|
#define ALIGNMENT EIGEN_MAX_ALIGN_BYTES
|
|
#else
|
|
#define ALIGNMENT 1
|
|
#endif
|
|
|
|
typedef Matrix<float,16,1> Vector16f;
|
|
typedef Matrix<float,8,1> Vector8f;
|
|
|
|
void check_handmade_aligned_malloc()
|
|
{
|
|
for(int i = 1; i < 1000; i++)
|
|
{
|
|
char *p = (char*)internal::handmade_aligned_malloc(i);
|
|
VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
|
|
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
|
|
for(int j = 0; j < i; j++) p[j]=0;
|
|
internal::handmade_aligned_free(p);
|
|
}
|
|
}
|
|
|
|
void check_aligned_malloc()
|
|
{
|
|
for(int i = ALIGNMENT; i < 1000; i++)
|
|
{
|
|
char *p = (char*)internal::aligned_malloc(i);
|
|
VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
|
|
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
|
|
for(int j = 0; j < i; j++) p[j]=0;
|
|
internal::aligned_free(p);
|
|
}
|
|
}
|
|
|
|
void check_aligned_new()
|
|
{
|
|
for(int i = ALIGNMENT; i < 1000; i++)
|
|
{
|
|
float *p = internal::aligned_new<float>(i);
|
|
VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
|
|
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
|
|
for(int j = 0; j < i; j++) p[j]=0;
|
|
internal::aligned_delete(p,i);
|
|
}
|
|
}
|
|
|
|
void check_aligned_stack_alloc()
|
|
{
|
|
for(int i = ALIGNMENT; i < 400; i++)
|
|
{
|
|
ei_declare_aligned_stack_constructed_variable(float,p,i,0);
|
|
VERIFY(internal::UIntPtr(p)%ALIGNMENT==0);
|
|
// if the buffer is wrongly allocated this will give a bad write --> check with valgrind
|
|
for(int j = 0; j < i; j++) p[j]=0;
|
|
}
|
|
}
|
|
|
|
|
|
// test compilation with both a struct and a class...
|
|
struct MyStruct
|
|
{
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
char dummychar;
|
|
Vector16f avec;
|
|
};
|
|
|
|
class MyClassA
|
|
{
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
char dummychar;
|
|
Vector16f avec;
|
|
};
|
|
|
|
template<typename T> void check_dynaligned()
|
|
{
|
|
// TODO have to be updated once we support multiple alignment values
|
|
if(T::SizeAtCompileTime % ALIGNMENT == 0)
|
|
{
|
|
T* obj = new T;
|
|
VERIFY(T::NeedsToAlign==1);
|
|
VERIFY(internal::UIntPtr(obj)%ALIGNMENT==0);
|
|
delete obj;
|
|
}
|
|
}
|
|
|
|
template<typename T> void check_custom_new_delete()
|
|
{
|
|
{
|
|
T* t = new T;
|
|
delete t;
|
|
}
|
|
|
|
{
|
|
std::size_t N = internal::random<std::size_t>(1,10);
|
|
T* t = new T[N];
|
|
delete[] t;
|
|
}
|
|
|
|
#if EIGEN_MAX_ALIGN_BYTES>0 && (!EIGEN_HAS_CXX17_OVERALIGN)
|
|
{
|
|
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
|
|
(T::operator delete)(t, sizeof(T));
|
|
}
|
|
|
|
{
|
|
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
|
|
(T::operator delete)(t);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(dynalloc)
|
|
{
|
|
// low level dynamic memory allocation
|
|
CALL_SUBTEST(check_handmade_aligned_malloc());
|
|
CALL_SUBTEST(check_aligned_malloc());
|
|
CALL_SUBTEST(check_aligned_new());
|
|
CALL_SUBTEST(check_aligned_stack_alloc());
|
|
|
|
for (int i=0; i<g_repeat*100; ++i)
|
|
{
|
|
CALL_SUBTEST( check_custom_new_delete<Vector4f>() );
|
|
CALL_SUBTEST( check_custom_new_delete<Vector2f>() );
|
|
CALL_SUBTEST( check_custom_new_delete<Matrix4f>() );
|
|
CALL_SUBTEST( check_custom_new_delete<MatrixXi>() );
|
|
}
|
|
|
|
// check static allocation, who knows ?
|
|
#if EIGEN_MAX_STATIC_ALIGN_BYTES
|
|
for (int i=0; i<g_repeat*100; ++i)
|
|
{
|
|
CALL_SUBTEST(check_dynaligned<Vector4f>() );
|
|
CALL_SUBTEST(check_dynaligned<Vector2d>() );
|
|
CALL_SUBTEST(check_dynaligned<Matrix4f>() );
|
|
CALL_SUBTEST(check_dynaligned<Vector4d>() );
|
|
CALL_SUBTEST(check_dynaligned<Vector4i>() );
|
|
CALL_SUBTEST(check_dynaligned<Vector8f>() );
|
|
CALL_SUBTEST(check_dynaligned<Vector16f>() );
|
|
}
|
|
|
|
{
|
|
MyStruct foo0; VERIFY(internal::UIntPtr(foo0.avec.data())%ALIGNMENT==0);
|
|
MyClassA fooA; VERIFY(internal::UIntPtr(fooA.avec.data())%ALIGNMENT==0);
|
|
}
|
|
|
|
// dynamic allocation, single object
|
|
for (int i=0; i<g_repeat*100; ++i)
|
|
{
|
|
MyStruct *foo0 = new MyStruct(); VERIFY(internal::UIntPtr(foo0->avec.data())%ALIGNMENT==0);
|
|
MyClassA *fooA = new MyClassA(); VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0);
|
|
delete foo0;
|
|
delete fooA;
|
|
}
|
|
|
|
// dynamic allocation, array
|
|
const int N = 10;
|
|
for (int i=0; i<g_repeat*100; ++i)
|
|
{
|
|
MyStruct *foo0 = new MyStruct[N]; VERIFY(internal::UIntPtr(foo0->avec.data())%ALIGNMENT==0);
|
|
MyClassA *fooA = new MyClassA[N]; VERIFY(internal::UIntPtr(fooA->avec.data())%ALIGNMENT==0);
|
|
delete[] foo0;
|
|
delete[] fooA;
|
|
}
|
|
#endif
|
|
|
|
}
|