95 lines
3.0 KiB
C++
95 lines
3.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_RUNTIME_NO_MALLOC
|
|
#include "main.h"
|
|
#include <limits>
|
|
#include <Eigen/Eigenvalues>
|
|
|
|
template<typename MatrixType> void real_qz(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
RealQZ.h
|
|
*/
|
|
using std::abs;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
Index dim = m.cols();
|
|
|
|
MatrixType A = MatrixType::Random(dim,dim),
|
|
B = MatrixType::Random(dim,dim);
|
|
|
|
|
|
// Regression test for bug 985: Randomly set rows or columns to zero
|
|
Index k=internal::random<Index>(0, dim-1);
|
|
switch(internal::random<int>(0,10)) {
|
|
case 0:
|
|
A.row(k).setZero(); break;
|
|
case 1:
|
|
A.col(k).setZero(); break;
|
|
case 2:
|
|
B.row(k).setZero(); break;
|
|
case 3:
|
|
B.col(k).setZero(); break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
RealQZ<MatrixType> qz(dim);
|
|
// TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition
|
|
//Eigen::internal::set_is_malloc_allowed(false);
|
|
qz.compute(A,B);
|
|
//Eigen::internal::set_is_malloc_allowed(true);
|
|
|
|
VERIFY_IS_EQUAL(qz.info(), Success);
|
|
// check for zeros
|
|
bool all_zeros = true;
|
|
for (Index i=0; i<A.cols(); i++)
|
|
for (Index j=0; j<i; j++) {
|
|
if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
|
|
{
|
|
std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl;
|
|
all_zeros = false;
|
|
}
|
|
if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0))
|
|
{
|
|
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl;
|
|
all_zeros = false;
|
|
}
|
|
if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
|
|
{
|
|
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl;
|
|
all_zeros = false;
|
|
}
|
|
}
|
|
VERIFY_IS_EQUAL(all_zeros, true);
|
|
VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A);
|
|
VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B);
|
|
VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim));
|
|
VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim));
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(real_qz)
|
|
{
|
|
int s = 0;
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( real_qz(Matrix4f()) );
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
|
CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) );
|
|
|
|
// some trivial but implementation-wise tricky cases
|
|
CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) );
|
|
CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) );
|
|
CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) );
|
|
CALL_SUBTEST_4( real_qz(Matrix2d()) );
|
|
}
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|