COSC-4P80-Assignment-2/lib/eigen-3.4.0/lapack/sladiv.f

129 lines
2.8 KiB
Fortran

*> \brief \b SLADIV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLADIV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sladiv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sladiv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sladiv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLADIV( A, B, C, D, P, Q )
*
* .. Scalar Arguments ..
* REAL A, B, C, D, P, Q
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLADIV performs complex division in real arithmetic
*>
*> a + i*b
*> p + i*q = ---------
*> c + i*d
*>
*> The algorithm is due to Robert L. Smith and can be found
*> in D. Knuth, The art of Computer Programming, Vol.2, p.195
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] A
*> \verbatim
*> A is REAL
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is REAL
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL
*> The scalars a, b, c, and d in the above expression.
*> \endverbatim
*>
*> \param[out] P
*> \verbatim
*> P is REAL
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is REAL
*> The scalars p and q in the above expression.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
SUBROUTINE SLADIV( A, B, C, D, P, Q )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
REAL A, B, C, D, P, Q
* ..
*
* =====================================================================
*
* .. Local Scalars ..
REAL E, F
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
IF( ABS( D ).LT.ABS( C ) ) THEN
E = D / C
F = C + D*E
P = ( A+B*E ) / F
Q = ( B-A*E ) / F
ELSE
E = C / D
F = D + C*E
P = ( B+A*E ) / F
Q = ( -A+B*E ) / F
END IF
*
RETURN
*
* End of SLADIV
*
END