import pandas as pd import matplotlib.pyplot as plt import numpy as np import sys file1 = sys.argv[1] file2 = sys.argv[2] bins = sys.argv[3] split = sys.argv[4] df1 = pd.read_csv(file1) df2 = pd.read_csv(file2) data1 = df1.to_numpy() data2 = df2.to_numpy() y_min = np.min(data2) y_max = np.max(data2) if split.lower() == "false": fig, ax1 = plt.subplots() ax1.plot(data1, color='b', label='Topological Error') ax1.set_xlabel('Epoch') ax1.set_ylabel('Error %', color='b') ax1.tick_params(axis='y', labelcolor='b') ax1.set_ylim(0, 1) #ax1.set_xlim(0, data1.size) ax2 = ax1.twinx() ax2.plot(data2, color='r', label='Quantization Error') ax2.set_ylabel('Incorrect BMU', color='r') ax2.tick_params(axis='y', labelcolor='r') ax2.set_ylim(y_min, y_max) ax1.set_title('Topological and Quantization Error (Bins: {})'.format(bins)) plt.savefig("errors{}.png".format(bins)) else: plt.plot(data1, color='b', label='Topological Error') plt.xlabel('Epoch') plt.ylabel('Error %', color='b') plt.tick_params(axis='y', labelcolor='b') plt.ylim(0, 1) plt.title("Topological Error (Bins: {})".format(bins)) plt.savefig("errors-topological{}.png".format(bins)) plt.plot(data2, color='b', label='Quantization Error') plt.xlabel('Epoch') plt.ylabel('Incorrect BMU', color='b') plt.tick_params(axis='y', labelcolor='b') plt.ylim(y_min, y_max) plt.title("Quantization Error (Bins: {})".format(bins)) plt.savefig("errors-quantization{}.png".format(bins))